Standardisation and social ordering: A change of perspective

Pablo Schyfter

Abstract


This article examines standardisation in synthetic biology as a form of social coordination and ordering. I discuss standardisation by exploring what makes standards possible, and offer an understanding based on infrastructures: technical and social systems that support the existence and operation of accepted standards. By exploring the role of social infrastructures, I contend that standards depend upon social ordering: ways of arranging people in particular positions, relations, and hierarchies. I suggest that synthetic biologists ought to develop an awareness of these social orders, take responsibility for their creation, and accept accountability for their consequences, both technical and social.

Keywords


synthetic biology; standards; infrastructures; social orders; responsibility

Full Text: PDF

DOI: https://doi.org/10.7203/metode.11.16013

References


Anderson, J. C., Dueber, J. E., Leguia, M., Wu, G. C., Goler, J. A., Arkin, A. P., & Keasling, J. D. (2010). BglBricks: A flexible standard for biological part assembly. Journal of Biological Engineering, 4(1). http://doi.org/10.1186/1754-1611-4-1

Arkin, A. (2008). Setting the standard in synthetic biology. Nature Biotechnology, 26(7), 771–774. http://doi.org/10.1038/nbt0708-771

Barnes, B. (2001). Practice as collective action. In T. Schatzki, K. Knorr Cetina, & E. von Savigny (Eds.), The practice turn in contemporary theory (pp. 17–28). Routledge. http://doi.org/10.4324/9780203977453

Canton, B., Labno, A., & Endy, D. (2008). Refinement and standardization of synthetic biological parts and devices. Nature Biotechnology, 26(7), 787–793. http://doi.org/10.1038/nbt1413

Endy, D., & Arkin, A. (1999). A standard parts list for biological circuitry. Defense Advanced Research Projects Agency.

Frow, E. K. (2013). Making big promises come true? Articulating and realizing the value of synthetic biology. BioSocieties, 8(4), 432–448. http://doi.org/10.1057/biosoc.2013.28

Mutalik, V. K., Guimaraes, J. C., Cambray, G., Lam, C., Christoffersen, M. J., Mai, Q.-A., Tran, A. B., Paull, M., Keasling, J. D., Arkin, A. P., & Endy, D. (2013). Precise and reliable gene expression via standard transcription and translation initiation elements. Nature Methods, 10(4), 354–360. http://doi.org/10.1038/nmeth.2404

Sauro, H. M. (2008). Modularity defined. Molecular Systems Biology, 4(1), 166. http://doi.org/10.1038/msb.2008.3

Schaffer, S. (1999). Late Victorian metrology and its instrumentation: A manufactory of ohms. In M. Biagioli (Ed.), The science studies reader (pp. 457–478). Routledge.

Schyfter, P. (2015). Metrology and varieties of making in synthetic biology. In O. Schlaudt, & L. Huber (Eds.), Standardization in measurement: Philosophical, historical and sociological issues (pp. 25–38). Pickering & Chatto. http://doi.org/10.4324/9781315653648

Vaughan, D. (1996). The Challenger launch decision: Risky technology, culture, and deviance at NASA. The University of Chicago Press. http://doi.org/10.7208/chicago/9780226346960.001.0001

Wenger, E. (1998). Communities of practice: Learning, meaning and identity. Cambridge University Press. http://doi.org/10.1017/CBO9780511803932


Refbacks

  • There are currently no refbacks.