DOI: https://doi.org/10.7203/metode.11.16013

Standardisation and social ordering: A change of perspective


Abstract


This article examines standardisation in synthetic biology as a form of social coordination and ordering. I discuss standardisation by exploring what makes standards possible, and offer an understanding based on infrastructures: technical and social systems that support the existence and operation of accepted standards. By exploring the role of social infrastructures, I contend that standards depend upon social ordering: ways of arranging people in particular positions, relations, and hierarchies. I suggest that synthetic biologists ought to develop an awareness of these social orders, take responsibility for their creation, and accept accountability for their consequences, both technical and social.


Keywords


synthetic biology; standards; infrastructures; social orders; responsibility

References


  • Anderson, J. C., Dueber, J. E., Leguia, M., Wu, G. C., Goler, J. A., Arkin, A. P., & Keasling, J. D. (2010). BglBricks: A flexible standard for biological part assembly. Journal of Biological Engineering, 4(1). doi: 10.1186/1754-1611-4-1

  • Arkin, A. (2008). Setting the standard in synthetic biology. Nature Biotechnology, 26(7), 771–774. doi: 10.1038/nbt0708-771

  • Barnes, B. (2001). Practice as collective action. In T. Schatzki, K. Knorr Cetina, & E. von Savigny (Eds.), The practice turn in contemporary theory (pp. 17–28). New York: Routledge. doi: 10.4324/9780203977453

  • Canton, B., Labno, A., & Endy, D. (2008). Refinement and standardization of synthetic biological parts and devices. Nature Biotechnology, 26(7), 787–793. doi: 10.1038/nbt1413

  • Endy, D. & Arkin, A. (1999). A standard parts list for biological circuitry. Berkeley, CA: Defense Advanced Research Projects Agency.

  • Frow, E. K. (2013). Making big promises come true? Articulating and realizing the value of synthetic biology. BioSocieties, 8(4), 432–448. doi: 10.1057/biosoc.2013.28

  • Mutalik, V. K., Guimaraes, J. C., Cambray, G., Lam, C., Christoffersen, M. J., Mai, Q. A., ... Endy, D. (2013). Precise and reliable gene expression via standard transcription and translation initiation elements. Nature Methods, 10(4), 354–360. doi: 10.1038/nmeth.2404

  • Sauro, H. M. (2008). Modularity defined. Molecular Systems Biology, 4(1), 166. doi: 10.1038/msb.2008.3

  • Schaffer, S. (1999). Late Victorian metrology and its instrumentation: A manufactory of ohms. In M. Biagioli (Ed.), The science studies reader (pp. 457–478). London: Routledge.

  • Schyfter, P. (2015). Metrology and varieties of making in synthetic biology. In O. Schlaudt, & L. Huber (Eds.), Standardization in measurement: Philosophical, historical and sociological issues (pp. 25–38). London: Pickering & Chatto. doi: 10.4324/9781315653648

  • Vaughan, D. (1996). The Challenger launch decision: Risky technology, culture, and deviance at NASA. Chicago: The University of Chicago Press. doi: 10.7208/chicago/9780226346960.001.0001

  • Wenger, E. (1998). Communities of practice: Learning, meaning and identity. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511803932







Creative Commons License
Texts in the journal are –unless otherwise indicated– published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

____________________________________________________________________________________________________________________