A mysterious Universe: Revealing the bright and dark sides of the cosmos

Susana Planelles, Veronica Biffi

Abstract


Why is our universe as we observe it? Will it be the same forever? Understanding the nature of the main constituents of the universe is crucial to obtain a precise description of the way in which it reached its present state. Nowadays, many independent observations support a picture in which the matter content of the universe is shared between an ordinary and observable baryonic component (~5?%) and an invisible dark matter (~23?%). The remaining ~72?% of the universe content is in the form of a completely mysterious dark energy field. This composition emphasizes that, while ~95?% of our universe represents a major uncertainty for us, even the minor contribution from normal and, apparently, known matter entails important challenges for cosmologists.


References


Bull, P., Akrami, Y., Adamek, J., Baker, T., Bellini, E., Beltrán Jiménez, J., ... Winther, H. A. (2016). Beyond LCDM: Problems, solutions, and the road ahead. Physics of the Dark Universe, 12, 56–99. doi: 10.1016/j.dark.2016.02.001

Eckert, D., Jauzac, M., Shan, H., Kneib, J. P., Erben, T., Israel, H., ... Tchernin, C. (2015). Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web. Nature, 528, 105–107. doi: 10.1038/nature16058

Hamilton, J. Ch. (2013). What have we learned from observational cosmology? Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 46(A), 70–85. doi: 10.1016/j.shpsb.2013.02.002

Hernández-Monteagudo, C., Ma, Y.-Z., Kitaura, F. S., Wang, W., Génova-Santos, R., Macías-Pérez, J., & Herranz, D. (2015). Evidence of the missing baryons from the kinematic Sunyaev-Zeldovich effect in Planck data. Physical Review Letters, 115(19). doi: 10.1103/PhysRevLett.115.191301

Moskowitz, C. (2016, April 11). Cosmic speed measurement suggests dark energy mystery. Scientific American. Retrieved from: http://www.scientificamerican.com/article/cosmic-speed-measurement-suggests-dark-energy-mystery/

Olmo, G. J. (2012). Open questions in cosmology. Rijeka: InTech. doi: 10.5772/45746

Riess, A. G., Macri, L. M., Hoffmann, S. L., Scolnic, D., Casertano, S., Filippenko, A. V., ... Foley, R. J. (2016). A 2.4 % determination of the local value of the Hubble constant. The Astrophysical Journal, 826(1). doi: 10.3847/0004-637X/826/1/56





Creative Commons License
Texts in the journal are –unless otherwise indicated– published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

____________________________________________________________________________________________________________________