Next stop: Language. The ‘FOXP2’ gene’s journey through time

Adriana Schatton, Constance Scharff


How did humans evolve language? The fossil record does not yield enough evidence to reconstruct its evolution and animals do not talk. But as the neural and molecular substrates of language are uncovered, their genesis and function can be addressed comparatively in other species. FOXP2 is such a case – a gene with a strong link to language that is also essential for learning in mice, birds and even flies. Comparing the role FOXP2 plays in humans and other animals is starting to reveal common principles that may have provided building blocks for language evolution.


Bolhuis, J. J., Okanoya, K., & Scharff, C. (2010).

Twitter evolution: Converging mechanisms in

birdsong and human speech. Nature Reviews

Neuroscience, 11, 747–759. doi: 10.1038/


Condro, M. C., & White, S. A. (2014). Recent

advances in the genetics of vocal learning.

Comparative Cognition & Behavior Reviews,

, 75–98. doi: 10.3819/ccbr.2014.90003

DasGupta, S., Ferreira, C. H., & Miesenböck,

G. (2014). FoxP influences the speed

and accuracy of a perceptual decision in

Drosophila. Science, 344, 901–904. doi:


Dennis, M. Y., Nuttle, X., Sudmant, P. H.,

Antonacci, F., Graves, T. A., Nefedov, M., …

Eichler, E. E. (2012). Human-specific evolution

of novel SRGAP2 genes by incomplete

segmental duplication. Cell, 149, 912–922. doi:


Enard, W., Gehre, S., Hammerschmidt, K.,

Hölter, S. M., Blass, T., Somel, M., … Pääbo, S. (2009). A humanized

version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell, 137,

–971. doi: 10.1016/j.cell.2009.03.041

Friederici, A. D. (2006). The neural basis of language development and its

impairment. Neuron, 52, 941–952. doi: 10.1016/j.neuron.2006.12.002

Graham, S. A., & Fisher, S. E. (2015). Understanding language from a

genomic perspective. Annual Review of Genetics, 49, 131–160. doi: 10.1146/


Haesler, S., Rochefort, C., Georgi, B., Licznerski, P., Osten, P., & Scharff,

C. (2007). Incomplete and inaccurate vocal imitation after knockdown of

FoxP2 in songbird basal ganglia nucleus area X. PLoS Biology, 5, e321. doi:


Haesler, S., Wada, K., Nshdejan, A., Morrisey, E. E., Lints, T., Jarvis, E.

D., & Scharff, C. (2004). FoxP2 expression in avian vocal learners and

non-learners. The Journal of Neuroscience, 24, 3164–3175. doi: 10.1523/


Janik, V. M., & Slater, P. J. B. (1997). Vocal learning in mammals. In P. Slater,

J. Rosenblatt, Ch. Snowdon, & M. Milinski (Eds.), Advances in the study of

behavior. Vol. 24 (pp. 59–99). San Diego, CA: Academic Press.

Kiya, T., Itoh, Y., & Kubo, T. (2008). Expression analysis of the FoxP

homologue in the brain of the honeybee, Apis mellifera. Insect Molecular

Biology, 17, 53–60. doi: 10.1111/j.1365-2583.2008.00775.x

Knörnschild, M. (2014). Vocal production learning in bats. Current Opinion

in Neurobiology, 28, 80–85. doi: 10.1016/j.conb.2014.06.014

Kuhl, P., & Meltzoff, A. (1982). The bimodal perception of speech in infancy.

Science, 218, 1138–1141. doi: 10.1126/science.7146899

Lai, C. S. L., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P.

(2001). A forkhead-domain gene is mutated in a severe speech and language

disorder. Nature, 413, 519–523. doi: 10.1038/35097076

Lawton, K. J., Wassmer, T. L., & Deitcher, D. L. (2014). Conserved role of

Drosophila melanogaster FoxP in motor coordination and courtship song.

Behavioural Brain Research, 268, 213–221. doi: 10.1016/j.bbr.2014.04.009

Li, S., Wang, Y., Zhang, Y., Lu, M. M., DeMayo, F. J., Dekker, J. D., Tucker, P.

W., & Morrisey, E. E. (2012). Foxp1/4 control epithelial cell fate during lung

development and regeneration through regulation of anterior gradient 2.

Development, 139, 2500–2509. doi: 10.1242/dev.079699

Mendoza, E., Colomb, J., Rybak, J., Pflüger, H.-J., Zars, T., & Scharff, C.

(2014). Drosophila FoxP mutants are deficient in operant self-learning. Plos

One, 9(6), e100648. doi: 10.1371/journal.pone.0100648

Murugan, M., Harward, S., Scharff, C., & Mooney, R. (2013). Diminished

FoxP2 levels affect dopaminergic modulation of corticostriatal signaling

important to song variability. Neuron, 80(6), 1464–1476. doi: 10.1016/j.


Santos, M. E., Athanasiadis, A., Leitão, A. B., DuPasquier, L., & Sucena, É.

(2011). Alternative splicing and gene duplication in the evolution of the

FoxP gene subfamily. Molecular Biology and Evolution, 28, 237–247. doi:


Shimeld, S. M., Degnan, B., & Luke, G. N.

(2010). Evolutionary genomics of the Fox

genes: Origin of gene families and the

ancestry of gene clusters. Genomics, 95,

–260. doi: 10.1016/j.ygeno.2009.08.002

Strausfeld, N. J., & Hirth, F. (2013). Deep

homology of arthropod central complex and

vertebrate basal ganglia. Science, 340, 157–

doi: 10.1126/science.1231828

Vargha-Khadem, F., Gadian, D. G., Copp,

A., & Mishkin, M. (2005). FOXP2 and the

neuroanatomy of speech and language. Nature

Reviews Neuroscience, 6, 131–138. doi:


Watkins, K. E., Dronkers, N. F., & Vargha-

Khadem, F. (2002). Behavioural analysis of

an inherited speech and language disorder:

Comparison with acquired aphasia. Brain, 125,

–464. doi: 10.1093/brain/awf058

Wohlgemuth, S., Adam, I., & Scharff, C.

(2014). FoxP2 in songbirds. Current Opinion

in Neurobiology, 28, 86–93. doi: 10.1016/j.


Zhang, G., Li, B., Li, C., Gilbert, M., Jarvis,

E., Wang, J. & The Avian Genome Consortium (2014). Comparative

genomic data of the Avian Phylogenomics Project. GigaScience, 3, 26. doi:


Full Text: PDF

Creative Commons License
Texts in the journal are –unless otherwise indicated– published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License