Building brains that can evolve: Challenges and prospects for evo-devo neurobiology

Georg F Striedter

Abstract


Evo-devo biology involves cross-species comparisons of entire developmental trajectories, not just of adult forms. This approach has proven very successful in general morphology, but its application to neurobiological problems is still relatively new. To date, the most successful area of evo-devo neurobiology has been the use of comparative developmental data to clarify adult homologies. The most exciting future prospect is the use of comparative developmental data to understand the formation of species differences in adult structure and function. An interesting «model system» for this kind of research is the quest to understand why the neocortex folds in some species but not others.


References


Abzhanov, A., Protas, M., Grant, B. G., Grant, P. R., & Tabin, C. J. (2004).

BMP4 and morphological variation of beaks in Darwin’s finches. Science,

, 1462–1465. doi: 10.1126/science.1098095

Charvet, C. J., & Striedter, G. F. (2009). Developmental origins of mosaic brain

evolution: Morphometric analysis of the developing zebra finch brain. The

Journal of Comparative Neurology, 514(2), 203–213. doi: 10.1002/cne.22005

Denes, A. S., Jékely, G., Steinmetz, P. R. H., Raible, F., Snyman, H.,

Prud’homme, B., … Arendt, D. (2007). Molecular architecture of annelid

nerve cord supports common origin of nervous system centralization in

bilateria. Cell, 129(2), 277–288. doi: 10.1016/j.cell.2007.02.040

Florio, M., Albert, M., Taverna, E., Namba, T., Brandl, H., Lewitus, E., …

Huttner, W. B. (2015). Human-specific gene ARHGAP11B promotes basal

progenitor amplification and neocortex expansion. Science, 347, 1465–1470.

doi: 10.1126/science.aaa1975

Gilbert, S. F., Opitz, J. M., & Raff, R. A. (1996). Resynthesizing evolutionary

and developmental biology. Developmental Biology, 173(2), 357–372. doi:

1006/dbio.1996.0032

Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Harvard

University Press.

Holland, P. W. H., Holland, L. Z., Williams, N. A., & Holland, N. D. (1992).

An amphioxus homeobox gene: Sequence conservation, spatial expression

during development and insights into vertebrate evolution. Development,

, 653–661.

Kollar, E. J., & Fisher, C. (1980). Tooth induction in chick epithelium:

Expression of quiescent genes for enamel synthesis. Science, 207, 993–995.

doi: 10.1126/science.7352302

Lander, A. D. (2011). Pattern, growth, and control. Cell, 144, 955–969. doi:

1016/j.cell.2011.03.009

McGowan, L., Kuo, E., Martin, A., Monuki, E. S., & Striedter, G. (2011).

Species differences in early patterning of the avian brain. Evolution, 65,

–911. doi: 10.1111/j.1558-5646.2010.01126.x

McGowan, L. D., Alaama, R. A., Freise, A. C., Huang, J. C., Charvet, C. J., &

Striedter, G. F. (2012). Expansion, folding, and abnormal lamination of the

chick optic tectum after intraventricular injections of FGF2. PNAS, 109(S1),

–10646. doi: 10.1073/pnas.1201875109

Medawar, P. B. (1967). The art of the soluble. London: Methuen.

Medina, L., Abellán, A., & Desfilis, E. (2013). A never-ending search for the

evolutionary origin of the neocortex: Rethinking the homology concept.

Brain, Behavior and Evolution, 81(3), 150–153. doi: 10.1159/000348282

Puelles, L., Kuwana, E., Puelles, E., Bulfone, A., Shimamura, K.,

Keleher, J., … Rubenstein, J. L. R. (2000). Pallial and subpallial

derivatives in the embryonic chick and mouse telencephalon, traced

by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and

Tbr-1. The Journal of Comparative Neurology, 424, 409–438. doi:

1002/1096-9861(20000828)424:33.0.CO;2-7

Striedter, G. F. (1998). Stepping into the same river twice: Homologues as

recurring attractors in epigenetic landscapes. Brain, Behavior and Evolution,

, 218–231. doi: 10.1159/000006565

Striedter, G. F., Srinivasan, S., & Monuki, E. S. (2015). Cortical folding: When,

where, how, and why? Annuals Reviews of Neuroscience, 38, 291–307. doi:

1146/annurev-neuro-071714-034128

Striedter, G. F. (2005). Principles of brain evolution. Sunderland, MA: Sinauer

Associates.

Sylvester, J. B., Rich, C. A., Loh, Y.-H. E., von Staaden, M. J., Fraser, G. J., &

Streelman, J. T. (2010). Brain diversity evolves via differences in patterning.

PNAS, 107, 9718–9723. doi: 10.1073/pnas.1000395107

West-Eberhard M. J. (2005). Phenotypic accommodation: Adaptive innovation

due to developmental plasticity. Journal of Experimental Zoology part

B: Molecular and Developmental Evolution, 304, 610–618. doi: 10.1002/

jez.b.21071


Full Text: PDF



Creative Commons License
Texts in the journal are –unless otherwise indicated– published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

____________________________________________________________________________________________________________________