DOI: https://doi.org/10.7203/metode.11.15601

From farmers to bioengineers: Sowing genes, harvesting molecules


Abstract


Twentieth-century agriculture faces major challenges that urgently need to be answered. In the last decade, new breeding technologies have been developed that can help meet these challenges. These technologies are not only more accurate and efficient, but are also simpler and more accessible, which will facilitate the progressive democratisation of agricultural biotechnology. In this text we discuss future agricultural development in terms of technological democratisation and regulatory relaxation. In this scenario one would expect an increase in the diversity of cultivated varieties and species, the strong development of biofactory crops and, in the long term, the emergence of increasingly fit «smart» crops.


Keywords


new plant breeding technologies; genetic editing; synthetic biology; biofactory plants

Full Text:

PDF

References


  • Barton, K. A., Binns, A. N., Matzke, A. J., & Chilton, M. D. (1983). Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell, 32(4), 1033–1043. doi: 10.1016/0092-8674(83)90288-x

  • Engler, C., Kandzia, R., & Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLOS ONE, 3(11), e3647. doi: 10.1371/journal.pone.0003647

  • FAO. (2018). The future of food and agriculture: Alternative pathways to 2050. Rome: Food and Agriculture Organitzation of the United Nations. Retrieved from http://www.fao.org/3/I8429EN/i8429en.pdf

  • Fuentes, I., Stegemann, S., Golczyk, H., Karcher, D., & Bock, R. (2014). Horizontal genome transfer as an asexual path to the formation of new species. Nature, 511(7508), 232–235. doi: 10.1038/nature13291

  • Herrera-Estrella, L., Depicker, A., Van Montagu, M., & Schell, J. (1983). Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature, 303, 209–213. doi: 10.1038/303209a0

  • Khan, M. Z., Zaidi, S. S., Amin, I., & Mansoor, S. (2019). A CRISPR way for fast-forward crop domestication. Trends in Plant Science, 24(4), 293–296. doi: 10.1016/j.tplants.2019.01.011

  • Lander, E. S. (2016). The heroes of CRISPR. Cell, 164(1-2), 18–28. doi: 10.1016/j.cell.2015.12.041

  • Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J., & Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155(3), 733–740. doi: 10.1099/mic.0.023960-0

  • Pillet, S., Aubin, E., Trépanier, S., Bussière, D., Dargis, M., Poulin, J. F., … Landry, N. (2016). A plant-derived quadrivalent virus like particle influenza vaccine induces cross-reactive antibody and T cell response in healthy adults. Clinical Immunology, 168, 72–87. doi: 10.1016/j.clim.2016.03.008

  • Qiu, X., Wong, G., Audet, J., Bello, A., Fernando, L., Alimonti, J. B., … Kobinger, G. P. (2014). Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature, 514(7520), 47–53. doi: 10.1038/nature13777

  • Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., … Jackson, S. A. (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463, 178–183. doi: 10.1038/nature08670

  • Stephan, A., Hahn-Löbmann, S., Rosche, F., Buchholz, M., Giritch, A., & Gleba, Y. (2017). Simple purification of Nicotiana benthamiana-produced recombinant colicins: High-yield recovery of purified proteins with minimum alkaloid content supports the suitability of the host for manufacturing food additives. International Journal of Molecular Sciences, 19(1), 95. doi: 10.3390/ijms19010095

  • Vazquez-Vilar, M., Orzaez, D., & Patron, N. (2018). DNA assembly standards: Setting the low-level programming code for plant biotechnology. Plant Science, 273, 33–41. doi: 10.1016/j.plantsci.2018.02.024

  • Wang, L., Jiang, S., Chen, C., He, W., Wu, X., Wang, F., … Chen, S. (2018). Synthetic genomics: From DNA synthesis to genome design. Angewandte Chemie International Edition English, 57(7), 1748–1756. doi: 10.1002/anie.201708741

  • Zsögön, A., Cermák, T., Naves, E. R., Notini, M. M., Edel, K. H., Weinl, S., … Peres, L. E. P. (2018). De novo domestication of wild tomato using genome editing. Nature Biotechnology, 36, 1211–1216. doi: 10.1038/nbt.4272

  • font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:

  • Calibri;mso-fareast-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;

  • mso-bidi-font-family:"Times New Roman";mso-bidi-theme-font:minor-bidi;

  • mso-ansi-language:ES;mso-fareast-language:EN-US;mso-bidi-language:AR-SA'>

  • style='mso-element:field-end'>

  • -->






Creative Commons License
Texts in the journal are –unless otherwise indicated– published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

____________________________________________________________________________________________________________________