DOI: https://doi.org/10.7203/metode.11.15507

Plants on demand: Genome editing for plant improvement


Abstract


The plants we eat are the outcome of a humans’ long history of domestication of wild species. The introduction of CRISPR/Cas gene-editing technology has provided a new approach to crop improvement and offers an interesting range of possibilities for obtaining varieties with new and healthier characteristics. The technology is based on two fundamental pillars: on the one hand, knowing complete genome sequences, and on the other, identifying gene functions. In less than a decade, the prospect of being able to design plants on demand is now no longer a dream, but a real possibility.


Keywords


crops; plant breeding; CRISPR/Cas9; genome editing

Full Text:

PDF

References


  • Beltrán, J. P. (2018). Cultivos transgénicos. Madrid: CSIC-Los libros de la Catarata.

  • Biswal, A. K., Mangrauthia, S. K., Reddy, M. R., & Yugandhar, P. (2019). CRISPR mediated genome engineering to develop climate smart rice: Challenges and opportunities. Seminars in Cell & Developmental Biology, 96, 100–106. doi: 10.1016/j.semcdb.2019.04.005

  • Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., . . . Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823. doi: 10.1126/science.1231143

  • FAO. (1983). World food security: A reappraisal of the concepts and approaches. Rome: Food and Agriculture Organization of the United Nations.

  • FAO. (1999). Women: Users, preservers and managers of agrobiodiversity. Rome: Food and Agriculture Organization of the United Nations.

  • FAO, IFAD, & WFP. (2012). The state of food insecurity in the world. Rome: Food and Agriculture Organization of the United Nations.

  • Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Science of the USA, 109(39), E2579–2586. doi: 10.1073/pnas.1208507109

  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. doi: 10.1126/science.1225829

  • Lander, E. S. (2016). The Heroes of CRISPR. Cell, 164(1-2), 18–28. doi: 10.1016/j.cell.2015.12.041

  • Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., . . . Gao, C. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 8, 14261. doi: 10.1038/ncomms14261

  • Medina, M., Roque, E., Pineda, B., Cañas, L., Rodríguez-Concepción, M., Beltrán, J. P., & Gómez-Mena, C. (2013). Early anther ablation triggers parthenocarpic fruit development in tomato. Plant Biotechnology Journal, 11(6), 770–779. doi: 10.1111/pbi.12069

  • Metje-Sprink, J., Menz, J., Modrzejewski, D., & Sprink, T. (2018). DNA-free genome editing: Past, present and future. Frontiers in Plant Science, 9, 1957. doi: 10.3389/fpls.2018.01957

  • Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J., & Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155(Pt 3), 733–740. doi: 10.1099/mic.0.023960-0

  • Mojica, F.J, & Montoliu, L. (2016). On the origin of CRISPR-Cas technology: From prokaryotes to mammals. Trends in Microbiology, 24(10), 811–820. doi: 10.1016/j.tim.2016.06.005

  • Montoliu, L. (2019). Editando genes: recorta, pega y colorea. Las maravillosas herramientas CRISPR. Pamplona: Next Door Publishers.

  • National Academies of Sciences & Medicine. (2016). Genetically engineered crops: Experiences and prospects. Washington, DC: The National Academies Press.

  • Ortigosa, A., Giménez-Ibáñez, S., Leonhardt, N., & Solano, R. (2019). Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnology Journal, 17(3), 665–673. doi: 10.1111/pbi.13006

  • Osakabe, Y., Liang, Z., Ren, C., Nishitani, C., Osakabe, K., Wada, M., . . . Nagamangala Kanchiswamy, C. (2018). CRISPR-Cas9-mediated genome editing in apple and grapevine. Nature Protocols, 13(12), 2844–2863. doi: 10.1038/s41596-018-0067-9

  • Rojas-Gracia, P., Roque, E., Medina, M., Rochina, M., Hamza, R., Angarita-Díaz, M. P., . . . Gómez-Mena, C. (2017). The parthenocarpic hydra mutant reveals a new function for a SPOROCYTELESS-like gene in the control of fruit set in tomato. New Phytologist, 214(3), 1198–1212. doi: 10.1111/nph.14433

  • Sánchez-León, S., Gil-Humanes, J., Ozuna, C. V., Giménez, M. J., Sousa, C., Voytas, D. F., & Barro, F. (2018). Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 16(4), 902–910. doi: 10.1111/pbi.12837

  • Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., . . . Gao, C. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31(8), 686–688. doi: 10.1038/nbt.2650

  • Taylor, S. L., & Hefle, S. L. (2001). Ingredient and labeling issues associated with allergenic foods. Allergy: European Journal of Allergy and Clinical Immunology, 56(67), 64–69. doi: 10.1034/j.1398-9995.2001.00920.x

  • Wang, T., Zhang, H., & Zhu, H. (2019). CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Horticulture Research, 6(1), 77. doi: 10.1038/s41438-019-0159-x

  • Wolter, F., Schindele, P., & Puchta, H. (2019). Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biology, 19(1), 176. doi: 10.1186/s12870-019-1775-1







Creative Commons License
Texts in the journal are –unless otherwise indicated– published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

____________________________________________________________________________________________________________________