One of the foremost experiments of the twentieth century: Stanley Miller and the origin of prebiotic chemistry


Stanley Miller is best known for his classic 1953 experiment on the synthesis of early Earth organic compounds, in the context of the origins of life. However, he did several other experiments that are lesser known and, in some cases, have never been published. The finding in 2007 that Miller had archived dried solutions from his 1950s experiments offered the opportunity of analyzing the products of his early experiments using modern day state-of-the-art techniques. These results, along with Miller’s results, have provided an inventory of the large variety of compounds that include amino acids, amines, simple peptides, hydroxy acids, simple hydrocarbons and urea, which can be synthesized under simulated early Earth conditions. 


amino acids; spark discharge; reducing atmosphere

Full Text:



  • Bada, J. L. (2013). New insights into prebiotic chemistry from Stanley Miller’s spark discharge experiments. Chemical Society Reviews, 42, 2186–2196. doi: 10.1039/c3cs35433d

  • Bada, J. L., & Lazcano, A. (2002). Miller revealed new ways to study the origins of life. Nature, 416, 475. doi: 10.1038/416475a

  • Bada, J. L., & Lazcano, A. (2003). Prebiotic soup – Revisiting the Miller experiment. Science, 300, 745–746. doi: 10.1126/science.1085145

  • Bada, J. L., & Lazcano, A. (2012). Stanley L. Miller (1930-2007): A biographical memoir. Retrieved from the National Academy of Sciences (USA) website:

  • Ball, P. (2005). Elegant solutions. London: Royal Society of Chemistry. doi: 10.1039/9781847552600

  • Burton, A. S., Stern, J. S., Elsila, J. F., Glavin, D. P., & Dworkin, J. P. (2012). Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chemical Society Reviews, 41, 5459–5472. doi: 10.1039/C2CS35109A

  • Cavendish, H. (1788). On the conversion of a mixture of dephlogisticated and phlogisticated air into nitrous acid, by the electric spark. Philosophical Transactions of the Royal Society of London, 78, 261–276.

  • Fekete, B. M., Vörösmarty, C. J., & Grabs, W. (2002). High‐resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochemical Cycles, 16(3), 1–10. doi: 10.1029/1999GB001254

  • Johnson, A. P., Cleaves, H. J., Dworkin, J. P., Glavin, D. P., Lazcano, A., & Bada, J. L. (2008). The Miller volcanic spark discharge experiment. Science, 322, 404. doi: 10.1126/science.1161527

  • Löb, W. (1913). Über das Verhalten des Formamids unter der Wirkung der stillen Entladung Ein Beitrag zur Frage der Stickstoff‐Assimilation. Berichte der deutschen chemischen Gesellschaft, 46(1), 684–697.

  • Miller, S. L. (1953). A production of amino acids under possible primitive earth conditions. Science, 117, 528–529. doi: 10.1126/science.117.3046.528

  • Miller, S. L. (1955). Production of some organic compounds under possible primitive earth conditions. Journal of the American Chemical Society, 77, 2351–2361. doi: 10.1021/ja01614a001

  • Miller, S. L. (1957). The mechanism of synthesis of amino acids by electric discharges. Biochimica et Biophysica Acta, 23, 480–489. doi: 10.1016/0006-3002(57)90366-9

  • Miller, S. L., & Urey, H. C. (1959). Organic compound synthesis on the primitive Earth. Science, 130, 251–251. doi: 10.1126/science.130.3370.245

  • Parker, E. T., Cleaves, H. J., Dworkin, J. P., Glavin, D. P., Callahan, M., Aubrey, A., Lazcano, A., & Bada, J. L. (2011). Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proceedings of the National Academy of Sciences, 108, 5526–5531. doi: 10.1073/pnas.1019191108

  • Parker, E. T., Zhou, M., Burton, A. S., Glavin, D. P., Dworkin, J. P., Krishnamurthy, R., Fernández, F. M., & Bada, J. L. (2014). A plausible simultaneous synthesis of amino acids and simple peptides on the primordial Earth. Angewandte Chemie, 126, 8270–8274. doi: 10.1002/ange.201403683

  • Peltzer, E. T., Bada, J. L., Schlesinger, G., & Miller, S. L. (1984). The chemical conditions on the parent body of the Murchison meteorite: Some conclusions based on amino, hydroxy and dicarboxylic acids. Advances in Space Research, 4, 69–74. doi: 10.1016/0273-1177(84)90546-5

  • Schimpl, A., Lemmon, R. M., & Calvin, M. (1965). Cyanamide formation under primitive Earth conditions. Science, 147, 149–150. doi: 10.1126/science.147.3654.149

  • Strecker, A. (1850). Ueber die künstliche Bildung der Müchsaure und einen neuen, dem Glycocoll homologen Körper. Liebigs Annalen der Chemie, 75, 27–45.

  • Weber, A. L., & Pizzarello, S. (2006). The peptide-catalyzed stereospecific synthesis of tetroses: A possible model for prebiotic molecular evolution. Proceedings of the National Academy of Sciences, 103, 12713–12717. doi: 10.1073/pnas.0602320103

  • Wöhler, F. (1828). Sur la formation artificielle de l’urée. Annual Review of Physical Chemistry, 37, 330–333.

Creative Commons License
Texts in the journal are –unless otherwise indicated– published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License