The fossil record of primate intelligence: From the earliest primates to human origins

David R. Begun


Animals collect and process the information they need to survive and reproduce. The means by which they process information is through the capacity of intelligence, which is in turn a function of the brain, its morphology, size, organization, and cytoarchitecture. While the internal organization and cellular interconnectivity of the brains of fossilized animals are invisible to paleontologists, the size and surface morphology of the brain are sometimes preserved, usually only in part, in the form of endocasts (casts, either natural or artificial, of the inside of the brain case). This broad survey of the evolution of intelligence in primates as interpreted from the fossil record of endocasts is primarily focused on the lineages that inform us more directly about the evolutionary events leading to the origin of human intelligence.


primate evolution; paleoneurology; paleoanthropology; hominoids; cognition

Full Text: PDF



Alba, D. M. (2012). Fossil apes from the Vallès-Penedès basin. Evolutionary Anthropology, Issues, News, and Reviews, 21(6), 254–269.

Begun, D. R. (2015a). The real planet of the apes. Princeton University Press.

Begun, D. R. (2015b). Fossil record of Miocene hominoids. In W. Henke & I. Tattersall (Eds.) Handbook of palaeoanthropology, pp. 1262–1332. Springer

Begun, D. R., & Kordos, L. (2004). Cranial evidence of the evolution of intelligence in fossil apes. In A. E. Russon & D. R. Begun (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 260–279). Cambridge University Press.

Beard, K. C. (1990). Gliding behaviour and palaeoecology of the alleged primate family Paromomyidae (Mammalia, Dermaptera). Nature, 345, 340–341.

Bloch, J. I., Silcox, M. T., Boyer, D. H., & Sargis, E. J. (2007). New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates. Proceedings of the National Academy of Sciences, 104(4), 1159–1164.

Böhme, M., Spassov, N., Fuss, J., Tröscher, A., Deane, A. S., Prieto, J., Kirscher, U., Lechner, T., & Begun, D. R. (2019). A new Miocene ape and locomotion in the ancestor of great apes and humans. Nature, 575(7783), 489–493.

Cartmill, M. (1992). New views on primate origins. Evolutionary Anthropology: Issues, News, and Reviews, 1(3), 105–111.

Gibson, K. R., Rumbaugh, D., & Beran, M. (2001). Bigger is better: Primate brain size in relationship to cognition. In D. Falk & K. R. Gibson (Eds.), Evolutionary anatomy of the primate cerebral cortex (pp. 79–97). Cambridge University Press,

Godinot, M. (2015). Fossil record of the primates from the Paleocene to the Oligocene. In W. Henke & I. Tattersall (Eds.), Handbook of palaeoanthropology (pp. 1137–1259). Springer.

Gunz, P., Kozakowski, S., Neubauer, S., Le Cabec, A., Kullmer, O., Benazzi, S., Hublin, J., & Begun, D. R. (2020). Skull reconstruction of the late Miocene ape Rudapithecus hungaricus from Rudabánya, Hungary. Journal of Human Evolution, 138, 102687.

Kay, R. F., Thorington, R. W., & Houde, P. (1990). Eocene plesiadapiform shows affinities with flying lemurs not primates. Nature, 345, 342–344.

Kelley, J. (2004). Life history and cognitive evolution in the apes. In A. E. Russon & D. R. Begun (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 280–297). Cambridge University Press.

Leakey, M., & Walker, A. (1997). Afropithecus: Function and phylogeny. In D. R. Begun, C. V. Ward, & M. D. Rose (Eds.), Function, phylogeny and fossils: Miocene hominoid evolution and adaptations, (pp. 225–239). Plenum Press.

López-Aguirre, C., Lang, M. M., & Silcox, M. T. (2022). Diet drove brain and dental morphological coevolution in strepsirrhine primates. PLOS ONE, 17(6), e0269041.

McNulty, K. P., Begun, D. R., Kelley, J., Manthi, F. K., & Mbua, E. N. (2015). A systematic revision of Proconsul with the description of a new genus of early Miocene hominoid. Journal of Human Evolution, 84, 42–61.

Moyà-Solà, S., Köhler, M., Alba, D. M., Casanovas-Vilar, I., & Galindo, J. (2004). Pierolapithecus catalaunicus, a new middle Miocene great ape from Spain. Science, 306(5700), 1339–1344.

Nakatsukasa, M., & Kunimatsu, Y. (2009). Nacholapithecus and its importance for understanding hominoid evolution. Evolutionary Anthropology: Issues, News, and Reviews, 18(3), 103–119.

Radinsky, L. (1979). The fossil record of primate brain evolution. 49th James Arthur Lecture. American Museum of Natural History.

Silcox, M. T., Sargis, E. J., Bloch, J. I., & Boyer, D. M. (2015). Primate origins and supraordinal relationships: Morphological evidence. In W. Henke & I. Tattersall (Eds.), Handbook of palaeoanthropology (pp. 1053–1081).

Smith, T. M., Martin, L. B., & Leaky, M. G. (2003). Enamel thickness, microstructure and development in Afropithecus turkanensis. Journal of Human Evolution, 44(3), 283–306.

Smith, T. M., Tafforeau, P., Pouech, J., & Begun, D. R. (2019). Enamel thickness and dental development in Rudapithecus hungaricus. Journal of Human Evolution, 136, 102649.

Street, S. E., Navarrete, A. F., Reader, S. M., & Laland, K. N. (2017). Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates. Proceedings of the National Academy of Sciences, 114(30), 7908–7914.

Sussman, R. W. (1991). Primate origins and the evolution of angiosperms. American Journal of Primatology, 23, 209–223.

Ward, C. V., Flynn, M., & Begun, D. R. (2004). Body size and intelligence in hominoid evolution. In A. E. Russon & D. R. Begun (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 335–349). Cambridge University Press.

Wu, Y., L. Fan, L., Bai, L., Li, Q., Gu, H., Sun, C., Jiang, T., & Feng, J. (2022). Ambush predation and the origin of euprimates. Science Advances, 8(37), eabn6248.


  • There are currently no refbacks.