Hideous progeny? The future of growing humans


Today’s biotechnologies are not simply providing powerful new possibilities in medicine; they are transforming our view of what it can mean to be human. In particular, the discovery of the extreme plasticity of cells – the possibility of changing one tissue type for another, and of regenerating the embryonic cell state from which we all grew – forces us to confront our status as a contingent community of living cells, and challenges traditional notions of self and identity. Here I discuss some of these technologies and their broader social, ethical and philosophical implications.


tissue engineering; stem cells; organoids; cell reprogramming; transhumanism


Aach, J., Lunshof, J., Iyer, E., & Church, G. M. (2017). Addressing the ethical issues raised by synthetic human entities with embryo-like features. eLife, 6, e20674.

Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature Communications, 9, 1911.

Bernal, J. D. (1970). The world, the flesh and the devil: An enquiry into the future of the three enemies of the rational soul. Jonathan Cape. (Original work published in 1931).

Boland, M. J., Hazen, J. L., Nazor, K. L., Rodriguez, A. R., Gifford, W., Martin, G., Kupriyanov, S., & Baldwin, K. K. (2009). Adult mice generated from induced pluripotent stem cells. Nature, 461, 91–94.

Greely, H. T. (2016). The end of sex and the future of human reproduction. Harvard University Press.

Greely, H. T. (2021). CRISPR people: The science and ethics of editing humans. MIT Press.

Harrison, S. E., Sozen, B., Christodoulou, N., Kyprianou, C., & Zernicka-Goetz, M. (2017). Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science, 356(6334), eaal1810.

Kim, J., Koo, B. K., & Knoblich, J. A. (2020). Human organoids: Model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 21, 571–584.

Kojima, J., Fukuda, A., Taira, H., Kawasaki, T., Ito, H., Kuji, N., Isaka, K., Umezawa, A., & Akutsu, H. (2017). Efficient production of trophoblast lineage cells from human induced pluripotent stem cells. Laboratory Investigation, 97, 1188–1200.

Li, F., Hu, J., & He, T.-C. (2017). iPSC-based treatment of age-related macular degeneration (AMD): The path to success requires more than blind faith. Genes & Disease, 4(2), 41–42.

More, M., & Vita-More, N. (Eds.). (2013). The transhumanist reader. Wiley-Blackwell.

Nagoshi, N., Tsuji, O., Nakamura, M., & Okano, H. (2019). Cell therapy for spinal cord injury using induced pluripotent stem cells. Regenerative Therapy, 11, 75–80.

Payne, N. L., Sylvain, A., O’Brien, C., Herszfeld, D., Sun, G., & Bernard, C. C. A. (2015). Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. New Biotechnology, 32(1), 212–228.

Pera, M. (2017). Embryogenesis in a dish. Science, 356(6334), 137–138.

Saitou, M., & Miyauchi, H. (2016). Gametogenesis from pluripotent stem cells. Cell Stem Cell, 18(6), 721–735.

Simunovic, M., & Brivanlou, A. H. (2017). Embryoids, organoids and gastruloids: New approaches to understanding embryogenesis. Development, 144(6), 976–985.

Squier, S. M. (2004). Liminal lives: Imagining the human at the frontiers of Biomedicine. Duke University Press.

Tang, P. C., Hashino, E., & Nelson, R. F. (2020). Progress in modeling and targeting inner ear disorders with pluripotent stem cells. Stem Cell Reports, 14(6), 996–1008.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomodad, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.


  • There are currently no refbacks.

Creative Commons License
Texts in the journal are –unless otherwise indicated– published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License