The Anthropocene perspective: A geological approach to climate change


The most recent division of geological time is based on climate events caused by variations in the Earth’s orbit and axis of rotation on a scale of thousands of years. However, the magnitude of geological change caused by humankind through its still young technosphere, particularly since the mid-20th century, is negatively affecting the other classical spheres (atmosphere, hydrosphere, biosphere, and geosphere). This is because of our increasing demand for raw materials and the incomplete recycling of its residues (e.g., greenhouse gases). The massive use of fossil fuels to power the recent boom in industrial development has turned humanity into the new agent of planetary-scale climate change. Some alterations associated with this new Anthropocene climate system are already irreversible and exceed the natural variability of the last few thousand years.


geology; earth system; technosphere; Quaternary; Anthropocene; climate change


Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., & Unnikrishnan, A. S. (2013). Sea level change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change (pp. 1137–1216). Cambridge University Press.

Crutzen, P. J., & Stoermer, E. F. (2000). The “Anthropocene”. Global Change International Geosphere–Biosphere Programme Newsletter, 41, 17–18.

Ganopolski, A., Winkelmann, R., & Schellnhuber, H. J. (2016). Critical insolation-CO2 relation for diagnosing past and future glacial inception. Nature, 529(7585) 200–203.

IPCC. (2019a). Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, ... J. Malley (Eds.). In press.

IPCC. (2019b). IPCC special report on the ocean and cryosphere in a changing climate. H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. M. Weyer (Eds.). In press.

Koppers, A. A. P., & Coggon, R. (2020). Exploring earth by scientific ocean drilling: 2050 Science Framework. UC San Diego Library Digital Collections.

Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., & Ludwig, C. (2015). The trajectory of the Anthropocene: The Great Acceleration. The Anthropocene Review, 2(1), 81–98.

Steffen, W., Leinfelder, R., Zalasiewicz, J., Waters, C. N., Williams, M., Summerhayes, C., Barnosky, A. D., Cearreta, A., Crutzen, P., Edgeworth, M., Ellis, E. C., Fairchild, I. J., Galuszka, A., Grinevald, J., Haywood, A., Ivar do Sul, J., Jeandel, C., McNeill, J. R., Odada, E., … Schellnhuber, H. J. (2016). Stratigraphic and Earth System approaches to defining the Anthropocene. Earth’s Future, 4(8) 324–345.

Summerhayes, C., & Cearreta, A. (2019). Climate change and the Anthropocene. In J. Zalasiewicz, C. N. Waters, M. Williams, & C. P. Summerhayes (Eds.), The Anthropocene as a geological time unit. A guide to the scientific evidence and current debate (pp. 200–241). Cambridge University Press.

Summerhayes, C. P., & Zalasiewicz, J. (2018). Global warming and the Anthropocene. Geology Today, 34(5), 194–200.

Syvitski, J., Waters, C., Day, J., Milliman, J. D., Summerhayes, C., Steffen, W., Zalasiewicz, J., Cearreta, A., Galuszka, A., Hajdas, I., Head, M. J., Leinfelder, R., McNeill, J. R., Poirier, C., Rose, N. L., Shotyk, W., Wagreich, M., & Williams, M. (2020). Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch. Communications Earth & Environment, 1, 32.

UNEP. (2019). Emissions gap report 2019. United Nations.

Walker, M., Head, M. J., Berkelhammer, M., Björck, S., Cheng, H., Cwynar, L., Fisher, D., Gkinis, V., Long, A., Lowe, J., Newnham, R., Rasmussen, S. O., & Weiss, H. (2018). Formal ratification of the subdivision of the Holocene Series/Epoch (Quaternary System/Period): Two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/subseries. Episodes, 41(4), 213–223.

Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier, C., Gałuszka, A., Cearreta, A., Edgeworth, M., Ellis, E. C., Ellis, M., Jeandel, C., Leinfelder, R., McNeill, J. R., Richter D. de B., Steffen, W., Syvitski, J., Vidas, D., Wagreich, M., Williams, M., … Wolfe, A. P. (2016). The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351(6269), aad2622.

Zalasiewicz, J., Williams, M., Waters, C., Barnosky, T., Palmesino, J., Rönnskog, A.-S., Edgeworth, E., Neal, C., Cearreta, A., Ellis, E. C., Grinevald, J., Haff, P., Ivar do Sul, Jeandel, C., Leinfelder, R., J. A., McNeill, J. R., Odada, E., Oreskes, N., Price, S. J., … Wolfe, A. P. (2017). Scale and diversity of the physical technosphere: A geological perspective. The Anthropocene Review, 4, 9–22.


  • There are currently no refbacks.

Creative Commons License
Texts in the journal are –unless otherwise indicated– published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License