DOI: https://doi.org/10.7203/metode.12.16505

Beyond the double helix: Structure of DNA G-quadruplexes


Abstract


DNA is the fundamental biomolecule needed for correct cell functioning and, until very recently, it was associated to the double helix structure discovered over 70 years ago by Crick, Watson, and Franklin. However, other DNA structures and conformations have been described, like G-quadruplexes. These G-quadruplexes are formed in regions of the genome that are rich in guanine. They have tetramer structure and control biological processes such as genetic expression, protection against ageing, or the transmission of neural information. In this document, we describe their chemical and structural characteristics, besides presenting their main cellular functions. Lastly, we present G-quadruplexes as molecular targets for future cancer therapies.


Keywords


G-quadruplex; DNA; telomeres; oncogene; drug

Full Text:

PDF

References


Chambers, V. S., Marsico, G., Boutell, J. M., Di Antonio, M., Smith, G. P., & Balasubramanian, S. (2015). High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nature Biotechnology, 33(8), 877–881. https://doi.org/10.1038/nbt.3295

Danzhou, Y., & Keika, O. (2010). Structural insights into G-quadruplexes: Towards new anticancer drugs. Future Medicinal Chemistry, 2(4), 619–646. https://doi.org/10.4155/fmc.09.172

Gellert, M., Lipsett, M. N., & Davies, D. R. (1962). Helix formation by guanylic acid. Proceedings of the National Academy of Sciences, 48(12), 2013–2018. https://doi.org/10.1073/pnas.48.12.2013

Henderson, E., Hardin, C. C., Walk, S. K., Tinoco, I., & Blackburn, E. H. (1987). Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell, 51(6), 899–908. https://doi.org/10.1016/0092-8674(87)90577-0

Neidle, S. (2017). Quadruplex nucleic acids as targets for anticancer therapeutics. Nature Reviews Chemistry, 1(5), 0041. https://doi.org/10.1038/s41570-017-0041

Neidle, S. & Balasubramanian, S. (eds.). (2006). Quadruplex nucleic acids. Royal Society of Chemistry.

Oregon State University. (2015). Linus Pauling and the race for DNA: A documentary history. Retrieved 2 May, 2020, from http://scarc.library.oregonstate.edu/coll/pauling/dna/index.html

Pont, I., Martínez-Camarena, A., Galiana-Roselló, C., Tejero, R., Albelda, M. T., González-García, J., Vilar, R., & García-España, E. (2020). Development of polyamine-substituted triphenylamine ligands with high affinity and selectivity for G-quadruplex DNA. ChemBioChem, 21(8), 1167–1177. https://doi.org/10.1002/cbic.201900678

Watson, J. D., & Crick, F. H. C. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171, 737–738. https://doi.org/10.1038/171737a0


Refbacks

  • There are currently no refbacks.





Creative Commons License
Texts in the journal are –unless otherwise indicated– published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

____________________________________________________________________________________________________________________