Pre-service Teacher Training in STEM: a Teaching Experience


The aim of this work is to evaluate the design of the subject ICT as a teaching resource in science and mathematics taught in the Bachelor's Degree in Primary Education of the Universitat de València, during the academic courses 2013-14 and 2014-15. The analysis is based on the works of the students and their responses to a questionnaire. The purpose of the subject is to train pre-service teachers in the STEM discipline to make them able to teach Science and Mathematics in an integrated way throughout the Information and Communication Technologies (ICT). The results show a high interest of the students in the subject, the design of activities and the cooperative work. However, some difficulties are identified related to the interdisciplinary teaching of science and mathematics in elementary courses. The application of ICT in the STEM teaching is an opportunity to develop the teaching competence.


Pre-service teacher training; Elementary Education; Teaching proposals; STEM; ICT


  1. Brown, J. (2012) 'The current status of STEM education research', Journal of STEM Education 13(5), 7-11.

  2. Capraro, R. M. y Slough, S. W. (2008) 'Why PBL? Why STEM? Why now? An introduction to STEM project based learning: an integrated science, technology, engineering, and mathematics (STEM) approach', in R.M. Capraro, M.M. Capraro y J. Morgan (eds.), STEM Project-Based Learning: An Integrated Science, Technology, Engineering and Mathematics (STEM) approach, pp. 1-5, Sense Publishers, Rotterdam.

  3. Couso, D. (2013) 'La elaboración de unidades didácticas y competenciales', Alambique: Didáctica de las ciencias experimentales 74, 12-24.

  4. De Pro, A. (2012) '¿Desarrollar competencias matemáticas en las clases de ciencias?', Alambique: Didáctica de las Ciencias Experimentales 70, 54-65.

  5. Díaz Barriga, A. (2011) 'Competencias en educación. Corrientes de pensamiento e implicaciones para el currículo y el trabajo en el aula'. RIES: Revista Iberoamericana de Educación Superior 2(5), 3-24. Disponible en Fecha de consulta, 11/11/2017.

  6. Driver, R. (1988) 'Un enfoque constructivista para el desarrollo del currículo en ciencias', Enseñanza de las Ciencias 6(2), 109-120. Disponible en Fecha de consulta, 11/11/2017.

  7. English, L. D. y Mousoulides, N. (2011) 'Engineering-based modelling experiences in the elementary and middle classroom', in M. S. Khine, y I. M. Saleh (eds.), Models and modeling: Cognitive tools for scientific enquiry, pp. 173-194, Springer, Dordrecht.

  8. European Commission/EACEA/Eurydice (2012) Developing Key Competences at School in Europe: Challenges and Opportunities for Policy-2011/12. Eurydice Report. Publications Office of the European Union, Luxembourg.

  9. Jorba, J. y Sanmartí, N. (1996) Enseñar, aprender y evaluar: un proceso de evaluación continua: Propuestas didácticas para las áreas de las ciencias naturales y matemáticas, Ministerio de Educación y Cultura, Centro de Investigación y Documentación Educación (C.I.D.E.). Disponible en

  10. Kertil, M. & Gurel, C. (2016) 'Mathematical modeling: A bridge to STEM education', International Journal of Education in Mathematics, Science and Technology 4(1), 44-55.

  11. Lesh, R. y Zawojewski, J.S. (2007) 'Problem Solving and Modeling', in: Lester, F., (ed.), Second Handbook of Research on Mathematics Teaching and Learning, pp. 763-802, Information Age Publishing, Greenwich.

  12. Lingefjärd, T. (2006) 'Faces of mathematical modeling', ZDM - The International Journal on Mathematics Education 38(2), 96-112.

  13. Niess, M. L. (2005) 'Preparing teachers to teach science and mathematics with technology: Developing a technology pedagogical content knowledge', Teaching and teacher education 21(5), 509-523.

  14. Moomaw, S. (2013) Teaching STEM in the early years: Activities for integrating science, technology, engineering, and mathematics, Redleaf Press.

  15. Reeve, E. (2015) 'STEM thinking!' Technology and Engineering Teacher 74(4), 8-16.

  16. Rinke, C. R., Gladstone‐Brown, W., Kinlaw, C. R. y Cappiello, J. (2016) 'Characterizing STEM Teacher Education: Affordances and Constraints of Explicit STEM Preparation for Elementary Teachers', School Science and Mathematics 116(6), 300-309.

  17. Ros, A. C., 2013, 'Hacer unidades didácticas: una tarea fundamental en la planificación de las clases de ciencias', Alambique: Didáctica de las ciencias experimentales 74, 5-11.

  18. Star, J. R. y Strickland, S. K., 2008, 'Learning to observe: Using video to improve preservice mathematics teachers’ ability to notice', Journal of mathematics teacher education 11(2), 107-125.

  19. Treffers, A. (1987) Three dimensions: A model of goal and theory description in mathematics instruction - The Wiskobas Project, Reidel, Dordrecht, the Netherlands.

  20. Tsupros, N., Kohler, R. y Hallinen, J. (2009) STEM education: A project to identify the missing components. Intermediate Unit 1. Center for STEM Education and Leonard Gelfand Center for Service Learning and Outreach, Carnegie Mellon University, Pennsylvania.

  21. Yasar, S., Baker, D., Kurpius-Robinson, S., Krause, S. y Roberts, C. (2006) 'A valid and reliable survey instrument for measuring K-12 teachers' perceptions and needs on design, engineering, and technology', ASEE Annual Conference and Exposition, Conference Proceedings.


  • There are currently no refbacks.

The texts published in this journal, unless otherwise indicated, are subject to a Creative Commons Attribution-Noncommercial-NoDerivativeWorks 3.0.Spain licence. They may be copied, distributed and broadcast provided that the author and the journal that publishes them, @tic. revista d'innovació educativa, are cited. Commercial use and derivative works are not permitted. The full licence can be consulted on Creative Commons

Editor: Servei de Formació Permanent i Innovació Educativa. Tel. 0034 961625030 | Fax. 0034 961625032 | Valencia. España

ISSN: 1989-3477 |  Depósito Legal: V5051-2008


Indexed in:


Consortial Journals