Analysing trophic competition in †Otodus megalodon and Carcharodon carcharias through 2D-SEM dental microwear

Abstract: The extinction of the massive apex predator †Otodus megalodon during the Pliocene is a subject of debate, with climate change and emergence of competitors as potential factors, such as Carcharodon carcharias. We explore trophic interactions of †O. megalodon and the C. carcharias by the analysis of dental microwear. For this purpose, high-resolution casts were made from ten megalodon teeth and six white shark teeth. Then, replicas were produced for examination using a Scanning Electron Microscope. Following a previous work on non-occlusal teeth of bony fishes, density and scratch length as well as mean vector were taken into account for the analysis. Our findings revealed that †O. megalodon shows a slight preference for less abrasive diets compared to C. carcharias. However, no significant differences were found in the dental microwear patterns of both species. These results provide additional evidence of a similar trophic spectrum between C. carcharias and †O. megalodon in the Mediterranean Sea basin, contrasting with previous data obtained through texture analysis. However, due to the inability to estimate sizes, we cannot rule out possible ontogenetic dietary differences. Therefore, future studies estimating sizes and incorporating data from other basins could provide more information.

Resumen: La extinción del gran depredador †Otodus megalodon durante el Plioceno es motivo de debate, con el cambio climático y la aparición de competidores como Carcharodon carcharias como potenciales factores. Exploramos las interacciones tróficas de †O. megalodon y C. carcharias mediante el análisis del microdesgaste dental. Para ello, se realizaron moldes de alta resolución a partir de dientes de megalodón y seis dientes de tiburón blanco. Tras ello, se realizaron réplicas para su examen mediante un microscopio electrónico de barrido. En base a un trabajo previo en dientes no oclusales de peces óseos, se tuvo en cuenta la densidad y longitud de las marcas, así como el vector medio para el análisis. Nuestros resultados revelaron que †O. megalodon muestra una ligera preferencia por dietas menos abrasivas que C. carcharias. Sin embargo, no se encontraron diferencias significativas en el patrón de microdesgaste dental de ambas especies. Estos resultados aportan evidencia adicional de un espectro trófico similar entre C. carcharias y †O. megalodon en la cuenca del mar Mediterráneo, contrastando con datos previos obtenidos mediante análisis de texturas. Sin embargo, dada la imposibilidad de estimar tamaños no podemos descartar posibles diferencias dietéticas a nivel ontogenético. Es por lo que, estudios futuros estudiando tamaños e incorporando datos de otras cuencas, podrían aportar más información.

INTRODUCTION

†Otodus megalodon (Elasmobranchii, Lamniformes, Otodontidae) is considered one of the largest apex predators of the oceans, with consistent reports of maximum length estimations ranging between 15 and 20 m (Pimiento & Balk, 2015; Perez et al., 2021; Shimada, 2019; Shimada et al., 2021, 2023), inhabiting the seas from the Miocene to the Pliocene (23–2.6 My) (Gottfried et al., 1996; Pimiento & Clements, 2014; Pimiento & Balk, 2015; Pimiento et al., 2016; Boessenecker et al., 2019). Considering the significant role that modern sharks play in regulating prey communities and ecosystem structure (Ferretti et al., 2010), its extinction likely had a profound impact on the functioning of the ecosystem and the dynamics of the trophic web within ancient marine communities (see Pimiento & Clements, 2014; Cooper et al., 2022). Conventionally, it has been hypothesised that †O. megalodon was constrained to warm temperatures,
linking its extinction and climate change (Gottfried et al., 1996). The peak global abundance of O. megalodon during the Middle Miocene coincided with the Mid–Miocene Climate Optimum (MMCO), while its continuous decline correlated with the oscillation of warm and cold temperatures during the Pliocene (Pimiento et al., 2016). In addition, Gottfried et al. (1996) also proposed that shifts in the distribution of marine mammals, like cetaceans and pinnipeds, to higher latitudes might have contributed to the O. megalodon extinction. This suggested that megalodon would be an ectothermic fish incapable of following the migrations of marine mammals to latitudes far from the tropics. Contrasting with previously held hypotheses regarding its distribution, additional fossil findings across the globe (see table S1 Pimiento et al., 2016) show that O. megalodon exhibited a cosmopolitan distribution, and during the Pliocene cooling events, no evident population concentration in warmer waters was observed (Pimiento et al., 2016). These findings are in line with the evidence of a regional endothermy in this apex predator as it occurs in the extant members of Lamnidae (Ferrón, 2017; Ferrón et al., 2018; Griffiths et al., 2023), which gives them the capacity to inhabit colder waters (Goldman, 1997). Moreover, 3D modelling of megalodon strongly implied that it was able to migrate across oceans, and thus naturally inhabit a wider range of temperatures (Cooper et al., 2022). This hypothesis has recently also been supported by fossil evidence of an in situ megalodon tooth found far out in the Pacific Ocean (Pollerspöck et al., 2023).

Under these considerations, it is more plausible that temperature changes were not the main factor affecting their survival, although other abiotic factors related to climate change, such as sea-level changes, could have been of more importance (see Pimiento et al., 2017). Regardless, biotic factors, such as prey availability and competition with other predators, may have played a more fundamental role in the extinction of megalodon. The presence of marine mammal remains within the same faunal assemblages where O. megalodon remains have been recovered, along with signs of predation by this shark (see Purdy, 1996; Godfrey & Altman, 2005; Aguilera et al., 2008; Kallal et al., 2012; Antunes et al., 2015; Carrillo-Briceño et al., 2016; Collareta et al., 2017a; Godfrey et al., 2018, 2021; Godfrey & Beatty, 2022), has led to the inference that this group of mammals may have constituted an important part of its diet. Consequently, the decreasing diversity of marine mammals towards the late Miocene (see Allmon, 2001; Marx & Uhen, 2010), likely resulted in a reduction of trophic resources for megalodon populations. Additionally, the emergence and diversification of novel competitors during the Middle Miocene, such as macrophagous sperm whales (see Lambert et al., 2010), or first killer whales (Orcinus) (Lindberg & Pyenson, 2006) and white shark (Carcharodon carcharias) in the Pliocene (Ehret et al., 2012), could have contributed to the extinction of O. megalodon. C. carcharias is the largest extant macrophagous lamniform and the only extant lamniform with serrated teeth (Shimada, 2002, 2019). Its dental morphology (see Cappetta, 2012), the studies based on stomach contents (see e.g., Bruce, 1992; Hussey et al., 2012; Grainger et al., 2020), in situ observations of predation (see e.g., Taylor et al., 2013) and scavenging events (see e.g., Fallows et al., 2013), evidence C. carcharias feed on marine mammals. In addition to feeding interactions between Pliocene representatives of the genus Carcharodon and cetaceans have been found in the fossil record (Ehret et al., 2009). These features led to considering the white shark as the closest extant ecological analogue of O. megalodon and, therefore, one of its main possible competitors. The calcium and nitrogen isotopic analyses revealed that O. megalodon occupied a higher trophic level than C. carcharias, implying differences in the trophic proclivities of both species (Martin et al., 2015; Kast et al., 2022). One suggested explanation is a potential ontogenetic dietary shift, as observed in other extant shark species (see e.g., Tricas & McCosker, 1984; Lowe et al., 1996; Ebert, 2002; Newman et al., 2012). Consequently, competition may arise between adult individuals of C. carcharias and juvenile populations of O. megalodon (Boessenecker et al., 2019). In this regard, the zinc isotope values reported in McCormack et al. (2022), which includes some juvenile teeth of O. megalodon (see supplementary data of McCormack et al., 2022), found similar values for the trophic position of both sharks. Regardless of discrepancies in isotopic analyses, both C. carcharias and O. megalodon would be apex predators within marine communities and are expected to exhibit some degree of dietary overlap. Dental microwear analyses refers to micro-meter scale wear indentations, that result from dietary abrasiveness and feeding events (Romero & De Juan, 2012). Therefore, the quantification of microwear signatures allows the inference about the type of food ingested and aspects of masticatory biomechanics (see Gordon, 1988). The earliest studies in dental microwear analysis, beginning in the 1950s, utilized a qualitative approach based on optical light microscopy (Butler, 1952; Mills, 1955; Baker et al., 1959). By the late 1970s, the preferred method shifted to Scanning Electron Microscopy (SEM) (2D approach), which allowed for quantitative analysis of enamel surface features by SEM micrographs. This advancement enabled researchers to investigate the relationship between diet and microwear patterns, especially in early hominins (Grine, 1977; 1986; Rensberger, 1978; Walker et al., 1978). Since the early 2000s, particularly following the works of Grine et al. (2002) and Semprebon et al. (2004), dental microwear texture analysis techniques (DMTA) (3D approach) began to be employed (see Scott et al., 2005; 2006; Ungar et al., 2003). Unlike analysis using SEM micrographs, DMTA employs a scanning white light confocal microscope and scale-sensitive fractal analysis. Although the
preferred technique currently is DMTA, a comparison between 2D tooth microwear and DMTA revealed the effectiveness of both methods for dietary discrimination in other groups of aquatic vertebrates (Purnell et al., 2012). In fact, both techniques have demonstrated to be useful tools for inferring dietary proclivities in extant and extinct vertebrates: mammals (e.g., Teaford & Robinson, 1989; Merceron et al., 2004; Adams et al., 2020; Rivals et al., 2022); dinosaurs (e.g., Barrett, 2001; Williams et al., 2009; Čižkova et al., 2022); reptiles (e.g., Bestwick et al., 2019; Winkler et al., 2019; Gere et al., 2021); and bony fishes (e.g., Purnell et al., 2006, 2007, 2012, 2013; Purnell & Darras, 2015). More recently, DMTA has been applied both on extinct (McLennan, 2018) and current sharks (McLennan & Purnell, 2021), showing the potential of dental microwear analysed as a tool for understanding dietary proclivities in elasmobranchs. More specifically, McLennan (2018) found non significative differences between dental microwear texture analyses of *O. megalodon* and *C. carcharias*, suggesting similar dietary trends and a possible direct competition between both species. However, these results are based on data from the Gulf of Mexico and Central Western Atlantic and there could be differences in other basins. Therefore, incorporating information from other geographical locations would be of interest.

With the aim of providing information on the dietary proclivities of *C. carcharias* and *O. megalodon*, we use the 2D-SEM approach to analyse the dental microwear of *C. carcharias* from the Pliocene of Guardamar del Segura (Alicante, Spain) and *O. megalodon* teeth from the Miocene of Ferriol (Alicante, Spain) and Vallongas (Alicante, Spain).

MATERIAL AND METHODS

For the possibility of conducting the microwear feature counting, we have examined previously the following samples: (1) Six teeth of *C. carcharias* from the early Pliocene (5.33–3.60 My) fossil locality near Guardamar del Segura (Alicante, Spain) (Soria et al., 2005; Adnet et al., 2010); (2) Eight teeth of *O. megalodon* from the Late Miocene (5.33–11.63 My) fossil locality close to Ferriol (Alicante, Spain) (García-Sanz et al., 2023); and (3) two teeth of *O. megalodon* from the Miocene (5.33–23.03 My) fossil locality Vallongas (Alicante, Spain). Finally, the total sample is comprised by six *C. carcharias* teeth and ten *O. megalodon* teeth (see Tab. 1) since they had retained a well-preserved pattern. The specimens are housed in the Museo Paleontológico de Elche (MUPE) (Alicante, Spain).

High-resolution casts of the whole crowns were made using President microsystem Affinis® Regular body (Coltène-Whaledent®) polyvinylsiloxane. Replicas were then produced from moulds using two-base component epoxy resin EPO 150 (CTS®, Spain) and following established procedures (Galbany et al., 2005). Epoxy casts were examined by SEM Hitachi S-4800 at 5 kV in Secondary Electron (SE) emission mode. All micrographs were taken at standardised magnification of 1000× following previous protocols (Purnell et al., 2006). SEM micrographs were taken from the first third of crown of each tooth in their labial face. Individual scratches, (i.e., a linear structure four times longer than its width) were counted and measured (µm), as well as registered their slope in the micrographs. Dental microwear analysis (Purnell et al., 2006) on non-occlusal teeth of bony fishes indicated that scratch density (mean number of features per mm²), scratch length (µm), and mean vector length (= R) were the most significative variables to detect proclivity dietary. Therefore, these three microwear variables were considered: 1) Mean Length of Scratches (MLS); 2) Mean Density of Scratches (MDS); and 3) Mean vector length (R), that provides a measure of angular dispersion (Zar, 1999). Microwear metrics were counted and measured using SigmaScan ProV (SPSS™ v.15) by a single observer (MVP-A) to mitigate interobserver effects (Galbany et al., 2005; Purnell et al., 2006).

Data were first explored using the Kolmogorov-Smirnov test (p > 0.05), which showed that tooth microwear variables were normally distributed. On the base of this data, a Principal Component Analysis (PCA) was carried out in R 4.3.0. Using R 4.3.0 a t-test was performed to assess if the variables differed significantly between *C. carcharias* and *O. megalodon*. The significance level was set at a = 0.05.

Remarks on the method

Taphonomic processes, as well as cleaning, preparation and moulding of fossil specimens (i.e., post-mortem processes) may produce alterations of dental microwear patterns. Experimental studies (e.g., Gordon, 1983, 1984; Puech et al., 1985; Teaford, 1988; Maas, 1994; King et al., 1999; Martínez & Pérez-Pérez, 2004; Romero & De Juan, 2012; Böhm et al., 2019; Uzunidis et al., 2021; Weber et al., 2021, 2022) evidence that post-mortem alterations are visually distinguishable from ante-mortem ingestion-related wear features. Moreover, post-mortem processes rarely can overlap dental microwear pattern (King et al., 1999; Böhm et al., 2019; Weber et al., 2021). Nevertheless, it is important to consider the possible post-mortem alteration that they may have undergone. Consequently, we made a first examination under the SEM to discard from the analyses those teeth with a high number of post-mortem features identified. This procedure has been followed by comparing with previous experimental studies (e.g., Gordon, 1983, 1984; Puech et al., 1985; Teaford, 1988; Maas, 1994; King et al., 1999; Martínez & Pérez-Pérez, 2004; Romero & De Juan, 2012; Böhm et al., 2019; Uzunidis et al., 2021; Weber et al., 2021, 2022). Finally, only well-preserved dental microwear patterns have been considered for the analyses.
RESULTS

The t-test showed that there are not significative differences between the variables defined for the analysis of dental microwear pattern of O. megalodon and C. carcharias (see Fig. 1A). Descriptive statistics for the groups are provided in Table 2. Individual microwear values are provided in Table 3.

On the PCA diagram (Fig. 1B), the area, formed by connection of marginal points for C. carcharodon, overlaps partially with the area formed by O. megalodon. The two first components (PC1-2) with eigenvalues greater than one account for 81.80% of total variance. The PC1 (54.12%) was mainly correlated with the mean length of scratches and the mean vector length with a positive loading for both variables. Therefore, O. megalodon appear to show longer scratches than C. carcharias. Instead, the PC2 (27.67%) captured mainly the density of scratches with a positive load. In this regard, the morphospace made by C. carcharias spread more extensively than O. megalodon.

DISCUSSION

The extant great white shark not only preys on marine mammals but also incorporates other food items into its diet, such as fish and marine reptiles, birds, other elasmobranchs and even some invertebrates (see e.g., Compagno, 1984; Cortés, 1999; Fergusson et al., 2000; Johnson et al., 2006; Clark et al., 2023). Assuming a similar behaviour for its Pliocene representatives, the absence of significant differences in the dental microwear pattern between this species and O. megalodon (Fig. 1A) suggests a similar wide spectrum of prey items, and analogous trophic ecologies. This hypothesis supports previously suggested ideas that the extinct megatooth shark would be a generalist, feeding on marine mammals, other elasmobranchs, bony fish, and marine reptiles (see Carillo-Briceño et al., 2016; Landini et al., 2017). Typical of the extant C. carcharias (Hussey et al., 2012) and other large predatory fish (Scharf et al., 2000; Bornatowski et al., 2014; Ferreira et al., 2017), O. megalodon could have developed an asymmetric feeding behaviour. For instance, the diet of smaller great white sharks is mainly composed of teleosts and other elasmobranchs, but as they grow, marine mammals gradually assume greater importance in their diet, while the consumption of the aforementioned prey items remains (Cliff et al., 1989; Lowe et al., 2012; Werry et al., 2012; Curtis et al., 2014). Among adult members of the species, smaller-sized individuals are observed actively and frequently preying on pinnipeds and small cetaceans, whereas larger individuals show preferences toward scavenging events on huge, fat-rich mysticete carcasses (see Arnold, 1972; Long & Jones, 1996; Hussey et al., 2012). Additionally, carrion has also been recorded as an important food source for other large macrophagous shark species (Smith & Baco, 2003; Smith et al., 2015; Aguzzi et al., 2018; Lea et al., 2018; Tucker et al., 2019; Silva et al., 2021). Considering this, along with the estimated size for O. megalodon (15–20 m) (Pimiento & Balk, 2015; Pérez et al., 2021; Shimada, 2019; Shimada et al., 2021, 2023), larger individuals are likely to scavenge carcasses more frequently than smaller ones (see Collareta et al., 2017a). Unlike extant populations of C. carcharias, it seems unlikely that large mysticetes served as the primary source of carrion for Miocene megatooth sharks, as the maximum increase in body size of these marine mammals did not occur until the late Pliocene and Pleistocene (Bisconti et al., 2023). Based on fossil evidence of bite marks and physeteroid distribution during the Miocene, it has been suggested that O. megalodon and other sharks actively exploited the carcasses of these marine mammals as a source of fat (Benites-Palomino et al., 2022). However, carrion is an unpredictable trophic resource as it is only sporadically available in marine ecosystems (Nowlin et al., 2008), so relying on scavenging as the primary food source to sustain the high energy requirements suggested for megalodon (see Cooper et al., 2022).
seems unlikely. Therefore, *O. megalodon* would have to actively prey on marine mammals.

Although previous studies have described putative nursery areas for *O. megalodon* in Miocene deposits from Spain (Herraiz et al., 2020), to date, no additional nursery areas have been described for *O. megalodon* in the deposits to which the studied teeth belong (see Tab. 1). In addition, with only ten individual teeth of *O. megalodon* and six teeth of *C. carcharias*, a population size study is not reliable and goes beyond the objectives of the present study. We lack a sufficient sample size to make inferences in an accurate way and undertake robust statistical analyses, despite previous studies using similar or even smaller sample sizes. Hence, no population size-based study groups have been established in this work. However, the greater variance found for the scratch length in *O. megalodon* (Tab. 2; Fig. 1) raises the need for future studies, increasing the sample size and inferring the size of individuals. Since we cannot rule out that this is a consequence of intra-specific variability among individuals of similar sizes, or it is due to differences in individual sizes. Although no significant difference has been found in the dental microwear pattern of both species (Tab. 2), a slight trend towards a higher density of shorter marks in the great white shark is observed. It is likely due to a tendency towards a slightly more abrasive diet, where the hard items produce greater density of scratches than softer preys (see e.g., Purnell et al., 2006; Fahlke et al., 2013). Including a higher proportion of marine reptiles (e.g., turtles) or elasmobranchs, whose dermal denticles are hypermineralised, could result in increased abrasiveness on the dental surface of *C. carcharias*. The interaction of the teeth with the mineralized endoskeleton tissues of marine mammal, could also lead to a higher density of microwear features. Nevertheless, it appears unlikely that *C. carcharias* would demonstrate a stronger inclination towards these items compared to *O. megalodon*, as isotopic analyses of calcium and nitrogen indicate a slightly higher trophic position for *O. megalodon* (see Martin et al., 2015; Kast et al., 2022). Furthermore, marine mammals contribute less than other elasmobranchs to the diet of extant populations of *C. carcharias* (see Cortés, 1999). This suggests that *O. megalodon* could have had a greater interaction with marine mammal populations, as reflected in the increase in the size of baleen whales following its extinction (see Pimiento & Clements, 2014; Cooper et al., 2022). Conversely, *C. carcharias* may have had a greater interaction with populations of other elasmobranchs. Nevertheless, the lack of comparison with extant representatives does not allow us to discern which items from the suggested dietary range could be causing this slight increase in abrasiveness in the great white shark.

A potential biotic factor in the extinction of *O. megalodon* is the competition with other marine raptorial macropredatory taxa, with large odontocetes being classically considered competitors (see Pimiento et al., 2016; and references therein). Also of special importance is the emergence of morphologically recognisable modern *Carcharodon* dental remains on the Mio-Pliocene fossil record (Ehret et al., 2009, 2012; Pimiento et al., 2016; Collarea et al., 2023a). Both *C. carcharias* and *O. megalodon* are species considered analogous from an ecological perspective (see Introduction, Pimiento & Balk, 2015; Pimiento et al., 2016; and references therein).
et al., 2010, 2017; Herraiz et al., 2020; Cooper et al., 2020, 2022) and are apex predators occupying higher trophic levels (Martin et al., 2015; Kast et al., 2022; McCormack et al., 2022). These facts, supported by evidence from the fossil record (see Purdy, 1996; Godfrey & Altman, 2005; Aguilera et al., 2008; Kallal et al., 2012; Antunes et al., 2015; Carrillo-Briceño et al., 2016; Collar et al., 2017a; Godfrey et al., 2018, 2020, 2021; Godfrey & Beatty, 2022), have led to propose that both species could compete for the same trophic resources. The absence of significant differences in the dental microwear pattern between ʻO. megalodon and C. carcharias suggests a similar dietary trend (see Fig. 1; Tab. 2). Similar results have found for the ʻO. megalodon and C. carcharias from the Gulf of Mexico and Central Western Atlantic (see McLennan, 2018). Although these findings could support previous hypotheses of potential trophic competition between ʻO. megalodon and C. carcharias (Pimiento et al., 2016, and references therein), it is important to consider that dietary trends may vary as consequence of ontogeny, which may not be detectable in this study. In addition, further studies with additional samples and a higher number of individuals from the same fossil sites are required.

Nonetheless, competition only occurs if the resource shared by coexisting species is limited (Hutchinson, 1957; MacArthur, 1958), and areas where multiple shark species with comparable habits and morphology coexist show some niche partitioning and different use of space by subordinate competitors (Weideli et al., 2023). Therefore, during the period of coexistence of both shark predators, a decrease in the availability of one or several dietary resources must have occurred. During the late Miocene and throughout the Pliocene, there was a decline in the diversity of marine mammal groups (Marx & Fordyce, 2015; Pimiento et al., 2017), particularly small to medium-sized whales (2.5–7 m) (Lambert et al., 2010). Probably, a decrease in the abundance of these marine mammals could have led to C. carcharias competing with ʻO. megalodon. However, it has been suggested that ʻO. megalodon preyed on larger marine mammals (see McLennan, 2018; Cooper et al., 2022). Although our results do not allow us to infer the size of the prey, it seems likely that the larger size of ʻO. megalodon could have enabled it to actively prey on marine mammals not accessible to C. carcharias. While it is true that this could have minimized competition with C. carcharias, the possibility that it competed with other large macropredatory sharks, such as ʻCarcharodon hastalis or ʻParotodus benedenii (see Noriega et al., 2007; Collar et al., 2017b, 2023b; McLennan, 2018), with which it coexisted, cannot be ruled out. During this time, a reduction in the diversity of marine mammals is noted, and previous studies have demonstrated a high trophic level of elasmobranchs for this period (Kast et al., 2022; McCormack et al., 2022).

CONCLUSIONS

The similarity in dental microwear patterns between the Pliocene Carcharodon carcharias and Miocene ʻOtodus megalodon suggests a comparable trophic spectrum that would include marine mammals, fish, marine reptiles, invertebrates, and other elasmobranchs. This supports the notion that megalodon was a generalist that could compete with the white shark for trophic resources.

Although no significant difference is found in the dental microwear pattern of both species, a slight trend towards a higher density of shorter scratches in the great white shark is noted. This could be attributed to a slightly more abrasive diet, possibly including a higher proportion of marine reptiles or elasmobranchs in its diet. Consequently, we purpose further studies including analyses of dental microwear pattern on extant elasmobranchs with well-known diets.

In summary, the Miocene ʻO. megalodon and the Pliocene C. carcharias exhibited a similar dietary trend in the Mediterranean Sea. However, we cannot rule out onontogenetic dietary trends, as well as the possible pre-existing trophic competition with other large sharks such as ʻC. hastalis or ʻParotodus benedenii. Additional research is required to delve deeper into these dynamics and explore potential factors contributing to the extinction of ʻO. megalodon.

Author contributions. MVP-A and JLH conceptualised the study. MVP-A carried out the methodology and statistical analyses. JLH and MVP-A prepared the figures. The manuscript was written by MVP-A and JLH. All authors reviewed the manuscript.

Competing interest. The authors declare no competing interests.

Funding. This study has been funded by “Ayudas a la Investigación de la Sociedad Española de Paleontología” AJISEP 2022 to MVP-A, and AYUDAS ATRACCIÓN TALENT UV.

Author details. Maria Victoria Paredes-Aliaga, & José Luis Herráiz. Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, 46980 Paterna, Spain; maria.v.paredes@uv.es, jose.l.herrai@uv.es.

Acknowledgements. We would like to express our gratitude to the entire team at the MUPE museum, especially Dr. Ainara Abarasturi. We also appreciate the reviewers and the editorial team at the SJP. The study of fossil collections was conducted under the authorization of the Conselleria de Cultura i Esport de la Generalitat Valenciana (file: A-2023-0716).

REFERENCES

Adnet, S., Balbino, A. C., Antunes, M. T., & Marín-Ferrer, J. M. (2010). New fossil teeth of the White Shark (Carcharodon

Paredes-Aliaga, M. V., & Herrera, J. L. - Dental microwear in megalodon and the great white shark - Spanish Journal of Palaeontology 39, 2024

