REVISIÓN DEL GÉNERO Cyclope Risso, 1826 (GASTROPODA: NASSARIIDAE) EN EL PLIOCENO MEDITERRÁNEO

Carles GILI y Jordi MARTINELL
Departament d’Estratigrafia i Paleontologia, Facultat de Geologia, Universitat de Barcelona. Zona Universitària de Pedralbes, 08071 - Barcelona. e-mail: jordim@natura.geo.ub.es

ABSTRACT

In paleontological literature, Pliocene forms of genus Cyclope are generally considered as C. neritea (Linnaeus, 1758), the name corresponding to the Recent Mediterranean species. This is because of the resemblance between the adult forms of both. The members of the genus section the apex of the shell (protoconch and first whorls of the teleoconch) when they reach the adult stage and therefore never exhibit the protoconch. Young Cyclope specimens with the protoconch have been found in the Lower Pliocene sediments of Monteu Roero (Piemonte, NW Italy). The protoconch of fossil specimens is multispiral, whereas the protoconch of the Recent C. neritea is paucispiral. This is sufficient evidence to consider these forms as two different species. The Pliocene species should be named C. migrilirini (Bevilacqua, 1928). These are sibling species that differs basically in its protoconch morphology, reflecting different embryonic-larval developments, without any modifications in the young-adult form.

The principal characteristics of the genus are commented on, a detailed description of fossil C. migrilirini and a comparison with Recent C. neritea are done. The only apparent consistent difference between the adult forms of both species is the greater overlapping of the whorls over the former ones in C. migrilirini. Both species also largely coincide in an autocological context.

The genus Cyclope appeared during the Early Pliocene. C. migrilirini should be considered the first species of the genus. It probably survived until Early Pleistocene (Calabrian), when it was replaced by C. neritea. C. migrilirini inhabited the greater part of the Mediterranean and adjacent areas of the Atlantic, as does C. neritea at present.

Keywords: Gastropods, Nassariidae, Cyclope, Systematics, Pliocene, Present, Mediterranean.

RESUMEN

En la literatura paleontológica, las formas del género Cyclope del Plioceno son consideradas, en general, como C. neritea (Linnaeus, 1758), nombre de la especie viviente en el Mediterráneo. Esto es debido a la casi total similitud entre los adultos de ambas formas. Los representantes de este género, al llegar al estado adulto, seccionan el ápice de su concha (protoconcha y primeras vueltas de la teleoconcha), por lo cual los adultos nunca presentan la protoconcha. En sedimentos del Plioceno Inferior de Monteu Roero (Piemonte, NO de Italia) se han hallado ejemplares juveniles del género Cyclope que conservan la protoconcha. La protoconcha de los individuos fósiles es multispiral, mientras que la protoconcha de los actuales C. neritea es paucispiral. Este dato es suficiente para considerar ambas formas como especies distintas. La especie pliocénica debe designarse como C. migrilirini (Bevilacqua, 1928). Estas son especies genetica que se diferenciaban básicamente por la morfología de su protoconcha, lo cual indica desarrollos embriionario-larvario distintos, sin modificaciones en la forma juvenil-adulta.

Se comentan los caracteres más relevantes del género, se hace una descripción detallada de C. migrilirini fósil y se realiza la comparación con C. neritea actual. La única diferencia que parece constante entre las formas adultas de ambas especies es el mayor recubrimiento de la última vuelta sobre las anteriores en C. migrilirini. También desde el punto de vista autocoeólico las dos especies coinciden ampliamente.

El género Cyclope apareció en el Plioceno Inferior. C. migrilirini debe considerarse la primera especie de este género. Probablemente perdió hasta el Pleistocene Inferior (Calabriense), siendo sustituida por C. neritea. C. migrilirini se extendió por la mayor parte del Mediterráneo y Atlántico adyacente tal como, en la actualidad, lo hace C. neritea.

Palabras clave: Gasterópodos, Nassariidae, Cyclope, Sistemática, Pliocene, Actual, Mediterráneo.

https://doi.org/10.7203/sjp.23752
INTRODUCCIÓN

En la literatura paleontológica referente al Plioceno de las regiones mediterránea y atlántica adyacente, se considera que los representantes del género Cyclope Risso, 1826 pertenecen a la especie actual C. neritea (Linnaeus, 1758). En efecto, la similitud morfológica de las formas adultas fósiles y actuales es casi total, y sus ligeras diferencias son del mismo rango de las que se suelen hallar entre poblaciones de una misma especie.

La reproducción y desarrollo de Cyclope neritea se conoce bien ((Boullc y Tardy, 1986b; Le Roux, 1994): las hembras depositan cápsulas ovíferas que generalmente contienen un único huevo, la larva se desarrolla y sufre la metamorfosis en su interior y eclosiona en forma de joven reptante (desarrollo intracapsular, en el sentido de Bouchet, 1989). La morfología de la protoconcha, que sólo se observa en los ejemplares inmaduros, refleja este tipo de desarrollo (Shuto, 1974; Jablonski y Lutz, 1980 y 1983) (Fig. 1): paucispiral (1,5 vueltas), obtusa, con núcleo grueso y prominente, y con una relación diámetro/número de vueltas (dp/vol) entre 0,43 y 0,48.

Si las formas fósil y actual correspondieran a lo que se espera de un tipo evolutivo (véase González Donoso, 1995), es decir, pertenecieran a la misma línea de descendencia sin discontinuidad en el tiempo, su desarrollo larvario debería ser el mismo. Así pues, la protoconcha de la forma fósil debería presentar una morfología con el mismo patrón ontogenético que el de la especie actual. En la bibliografía consultada no se ha hallado ningún dato sobre la protoconcha de la supuesta C. neritea del Plioceno, excepto en Ferrero y Merlín (1992) en donde se figura un juvenil con protoconcha, de la región de Asti (Piemonte, NO de Italia), sin ningún comentario adicional. Por nuestra parte, en el sedimento del Plioceno Inferior procedente de Monteu Roero (Piemonte, NO de Italia), hemos hallado formas juveniles de Cyclope con la protoconcha conservada junto a formas adultas que presentan el ápice seccionado. Por esta coincidencia en el tiempo y en el espacio, hemos asumido que unas y otras se corresponden. La morfología de estas protoconchas es multisprial (2,5 vueltas), bastante aguda, con núcleo pequeño no prominente, y con relación dp/vol de 0,22. Se trata, por tanto, de una morfología totalmente distinta de la de las formas actuales (Fig. 1). La protoconcha del ejemplar juvenil figurado por Ferrero y Merlín (1992) es similar. Este conjunto de caracteres de la protoconcha denota un proceso ontogenético en la fase larvaria distinto del de la especie actual. Por lo tanto, aún en el caso de haber coincidido ambas formas de Cyclope en algún momento, hubiera existido una barrera reproductora entre ellas. Es decir, dichas formas no pertenecen a la misma línea de descendencia, puesto que el cambio en el tipo de desarrollo creó una discontinuidad. La forma plicónica de Cyclope no es conspecifica con la actual, es decir, nos hallamos ante dos especies distintas. El nombre C. neritea debe conservarse sólo para la forma viviente, ya que Linnaeus lo utilizó en este sentido.

En la bibliografía consultada referente a la malacofauna del Neógeno, solo hemos hallado una cita de Cyclope no atribuida a C. neritea. Bevilacqua (1928) describe una nueva especie, Cyclonassa miglierinii (= Cyclope miglierinii), para el Plioceno y Pleistoceno de la isla de Rodas (Grecia), diferenciándola explícitamente de la especie actual. Aunque la autora no hace referencia a la protoconcha de su especie, y el holotipo tampoco presenta esta estructura (Pinna y Spezia, 1978), hemos considerado que las formas halladas por nosotros en Monteu Roero se corresponden con esta especie, ya que la coincidencia entre los adultos es total. De todas maneras, en nuestra opinión, C. miglierinii, si bien está correctamente definida según la normativa, de su descripción original adolece de la falta de información con relación a la protoconcha.

En este trabajo se comentan inicialmente los caracteres distintivos del género Cyclope, se redescubre C. miglierinii (Bevilacqua, 1928) y se hace una comparación exhaustiva con la especie actual. Asimismo, se discuten aspectos paleoecológicos, paleoecológicos y estratigráficos de la especie plicónica.

PALEONTOLOGÍA SISTEMÁTICA

CLASE GASTROPODA: Cuvier, 1797
SUBCLASE PROSOBRANCHIA: Milne Edwards, 1848
ORDEN NEOGASTROPODA: Thiele, 1929
FAMILIA NASSARIIDAE: Iredale, 1916
GÉNERO CYCLOPE: Risso, 1826

Especie tipo: Buccinum neriteum Linnaeus, 1758.

Diagnóstico

Concha pequeña, sólida, discoidal, con perfil lenticular, convexa dorsalmente y más plana ventralmente, lisa. Espera normalmente truncada en los adultos, observándose sólo las últimas 2 vueltas de espira, las cuales se superponen casi totalmente sobre las anteriores de manera que la última vuelta forma casi toda la concha. Abertura pequeña, sub-circular piriforme, con columela lisa muy cóncava y labro fuertemente curvado. Interior del labro con pequeños dentículos o liso y con un engrosamiento externo. La callosidad columelar cubre toda la región ventral. Canal sifonal muy corto (no sobresale de la última vuelta) y estrecho, sin pliegue columelar (Fig. 2).

Observaciones

Hay varios aspectos morfológicos característicos de este género:
I. La gran superposición de las vueltas de espira (Fig. 3) da a este género un aspecto similar al de algunos arqueogasterópodos (p. ej. *Umbo*), pero ello se consigue por la eliminación del ápice (protoconcha y primeras vueltas de espira) y no por un enrollamiento homogéneo de toda la concha. Como se observa en las formas juveniles, las primeras vueltas de teleconcha se enrollan de la misma forma que en *Nassarius*, es decir, cada vuelta cubre aproximadamente la mitad de la anterior, pero a partir de la tercera vuelta la superposición se hace mucho mayor. Esto permite reconocer estas formas jóvenes como pertenecientes al género *Cyclope* respecto a los juveniles del género *Nassarius* (Fig. 3).

II. La sección del ápice no es accidental sino un proceso activo del animal. En individuos que han llegado al máximo de desarrollo de la concha y todavía no han eliminado el ápice, es habitual observar una concavidad en la parte ventral de la espira que corresponde a la zona de disolución (Fig. 3). Una vez completada la eliminación, la cicatriz queda cubierta por una fina callosidad que es una expansión de la callosidad columnar. Este mismo proceso se observa en *Nassarius (Plicarcularia)* circumcinctus (A. Adams, 1852) (Olivero y Tringali, 1992).

III. La abertura de la concha se sitúa en un plano casi perpendicular al eje de enrollamiento de la concha, mientras que lo normal, incluso en las formas tipo *Umbo*, es que el plano de apertura sea más o menos paralelo a este eje. Esto se consigue por una desviación de la sutura hacia la periferia en el último cuarto de vuelta. (Fig. 3). El resultado es una geometría de la concha y, como consecuencia, una posición de vida del animal, excepcional entre los neogasterópodos (Vermeij, 1971).

IV. El engrosamiento externo del labro es una estructura distinta de la habitual variz labial en nasáridos y otros gasterópodos. La variz labial consiste en un engrosamiento más o menos definido de la periferia del labro construido a partir de la capa externa de la concha, en discontinuidad con la capa interna. En *Cyclope*, así como en el subgénero *Nassarius (Plicarcularia)* Thiele, el engrosamiento consiste en una expansión de la capa interna de la concha sobre el borde externo del labro. El material que lo forma es el mismo que el de la callosidad columnar. Al ser una estructura superpuesta, queda claramente delimitada respecto a la parte dorsal de la concha por un fino surco. Para esta estructura especial, no homóloga de la variz labial, proponemos el nombre de "callosidad labral". Normalmente, cuando existe callosidad labral, ésta se halla fusionada con la callosidad columnar por la zona adapical de la abertura y por encima del canal sifonal.

Cyclope migliorinii (Bevilacqua, 1928)

Fig. 1, Fig. 2

1901 *Cyclonassia neritea* (Linné); Cossmann, 217, lám. 1, fig. 11.
1904 *Cyclonassia neritea* (L.); Sacco, 72, lám. 17, figs. 6 - 7.
1911 *Cyclonassia neritea* L; Cerulli-Irelli, 254, lám. 23, figs. 57 - 58.
1928 *Cyclonassia migliorinii* sp. n. Bevilacqua, 173, lám. 3, figs. 11a - c.
1959 *Nassa* (Cyclonassia) *neritea* Linné; Zbyszewski, 96.
1974 *Cyclope* (*Cyclope*) *neritea* (L. 1766); Malatesta, 324, lám. 26, figs. 3a - b.
1975 *Cyclonassia* *neritea* (Linné); Fekih, 125, lám. 39, figs. 2a - d.
1975 *Cyclope* (*C.*) *neritea* (Linné); Pavia, 113.
1978 *Cyclonassia migliorinii* Bevilacqua, 1928; Pinna y Spezia, 138, lám. 45, figs. 1 - 1b.
1979 *Cyclope* (*C.*) *neritea* (Linné); Montefameglio et al., 190.
1992 *Cyclope* (*Cyclope*) *neritea* (L., 1758); Cavallo y Reppeto, 104, fig. 242.

1992 *Cyclope* (*C.*) *neritea* (Linneo); Ferrero y Mertino, 129, lám. 1, fig. 9.
1995b *Cycloe neritea* (Linné, 1758); Vera-Peláez et al., 110.

(En esta sinonimia sólo se han hecho constar aquellos trabajos de los cuales se ha podido consultar el material original, aunque no contengan figuras, y aquellos que presentan figuras claras. Se han omitido las citas que no presentan el material figurado o las figuras no son suficientemente claras).

Holotipo: Bevilacqua 1928, pág. 173, Lám. 3, figs. 11 a, b, c y d. Museo Civico di Storia Naturale di Milano, n° i 2319.

Material examinado

Monteu Roero (Piemonte, NO Italia), Plioceno Inferior (Zanclienense), 46 ejemplares; Velerín (Malaga, S España), Plioceno Inferior (Zanclienense), 77 ejem.; Pedassos (Peloponeso, Grecia), Plioceno medio (Plasenciense), 19 ejem.; San Giacomo (Piemonte, NO Italia), Plioceno Inferior (Zanclienense), 2 ejem.; San Pedro de Muel (Mina, O

Portugal), Plioceno medio (Plasenciaense). 1 ejem.

Diagnosis

La misma que para el género, con la sutura de la última vuelta en los adultos muy próxima a la de la penúltima vuelta, y con protoconcha de 2,5 vueltas.

Descripción

Protoconcha: consta de 2,5 vueltas lisas y convexas, con núcleo (primera 1/2 vuelta) pequeño (0,1 mm de diámetro en el ejemplar figurado), no prominente, con crecimiento espiral regular. El tránsito a la teleoconcha sólo se distingue por la aparición de las estrías de crecimiento y por un cambio en la textura de la concha (Fig. 1).

Teleoconcha: Discoidal, perfil lenticular, sin ornamentación y con estrías de crecimiento opistocócticas. La última vuelta cubre la mayor parte de la concha, su línea de sutura se halla casi en contacto con la de la penúltima vuelta. Concha muy convexa dorsalmente, con una ligera gibosidad, mucho menos convexa ventralmente. Espira truncada en los adultos. Abertura sub-circular piriforme, corta y ancha, con estrecho y profundo canal análogo. Canal sifonal muy corto, abierto, que no sobresale de la última vuelta. Columna lisa, muy concava, sin crestas columnelares en el borde del canal sifonal. Labro engrosado externamente por una gruesa callosidad labral, internamente puede presentar cortos denticulos (2 a 13). La callosidad columnelar se extiende sobre toda la región ventral y puede alcanzar, también ventralmente, la zona de sección de la espira a partir de la parte adapical de la abertura.

Para el conjunto de los especímenes estudiados, los valores medios de los parámetros medidos son: altura (H) 7,34 mm, diámetro (D) 13,6 mm, anchura (A) 10,85 mm y altura de la abertura (Ho) 8,71 mm (Tab. 1).

Variabilidad de la teleoconcha: la morfología del material de las distintas muestras estudiadas es muy similar, sólo pocos caracteres presentan alguna variación. Los denticulos labrales normalmente se hallan ausentes en Piemonte y Pedassos (solo 3 y 4 ejemplares los presentan, respectivamente), mientras que en Mallorca los tienen casi la mitad de los ejemplares. La anchura de la callosidad labral también varía, pero en la mayoría (72 de 84 ejemplares medidos) es muy ancha. Son muy pocos los individuos en los que la callosidad columnal no se expande hacia el ápice truncado.

Las dimensiones, por el contrario, son bastante variables según el origen del material, aunque en cada localidad las medidas son más homogéneas. Los ejemplares de Velerina son los mayores (diámetro medio de 16,18 mm). Los de Pedassos presentan los valores menores (diámetro medio de 8,47 mm). En Monteu Roero y San Giacomo se dan valores intermedios (diámetro medio de 11,59 mm), aunque se ha hallado un ejemplar muy grande (diámetro de 18,05 mm). A pesar de la variación en el tamaño, las relaciones entre los distintos parámetros son bastante homogéneas en las distintas localidades (Tab. 2). La comparación de los valores medios de la relación D/H, entre todas las parejas de localidades, mediante el test T - Student (a un nivel de significación = 0.05), indica que las diferencias no son estadísticamente significativas.
Cyclopes gigantissimus (Bevilacqua, 1928)

<table>
<thead>
<tr>
<th>Número de datos</th>
<th>91</th>
<th>91</th>
<th>91</th>
<th>91</th>
<th>91</th>
<th>91</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor máximo</td>
<td>10.10</td>
<td>18.80</td>
<td>14.60</td>
<td>12.15</td>
<td>2.07</td>
<td>0.88</td>
</tr>
<tr>
<td>Valor mínimo</td>
<td>3.70</td>
<td>7.65</td>
<td>5.60</td>
<td>4.20</td>
<td>1.63</td>
<td>0.65</td>
</tr>
<tr>
<td>Media</td>
<td>7.34</td>
<td>13.80</td>
<td>10.85</td>
<td>8.71</td>
<td>1.86</td>
<td>0.80</td>
</tr>
<tr>
<td>Media</td>
<td>7.90</td>
<td>14.75</td>
<td>11.85</td>
<td>9.35</td>
<td>1.86</td>
<td>0.79</td>
</tr>
<tr>
<td>Desviación típica</td>
<td>1.88</td>
<td>3.38</td>
<td>2.82</td>
<td>2.32</td>
<td>0.08</td>
<td>0.03</td>
</tr>
<tr>
<td>Varianza</td>
<td>3.53</td>
<td>11.44</td>
<td>7.98</td>
<td>5.37</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Cyclopes gigantissimus (Bevilacqua, 1928)

<table>
<thead>
<tr>
<th>Número de datos</th>
<th>50</th>
<th>50</th>
<th>50</th>
<th>50</th>
<th>50</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor máximo</td>
<td>10.10</td>
<td>18.80</td>
<td>14.60</td>
<td>12.15</td>
<td>2.07</td>
<td>0.88</td>
</tr>
<tr>
<td>Valor mínimo</td>
<td>6.95</td>
<td>13.30</td>
<td>10.75</td>
<td>8.55</td>
<td>1.63</td>
<td>0.77</td>
</tr>
<tr>
<td>Media</td>
<td>8.76</td>
<td>16.18</td>
<td>13.02</td>
<td>10.47</td>
<td>1.85</td>
<td>0.80</td>
</tr>
<tr>
<td>Mediana</td>
<td>8.88</td>
<td>16.43</td>
<td>13.23</td>
<td>10.65</td>
<td>1.86</td>
<td>0.81</td>
</tr>
<tr>
<td>Desviación típica</td>
<td>0.07</td>
<td>1.18</td>
<td>0.91</td>
<td>0.84</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>Varianza</td>
<td>0.45</td>
<td>1.28</td>
<td>0.83</td>
<td>0.70</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Tabla 1. Resumen global de los valores (en mm) de los parámetros medidos en las dos especies que se comparan. H = altura; D = diámetro; A = anchura; Ho = altura de la abertura. En el gráfico se esquematiza el significado de cada parámetro, según han sido medidos.

Comparación con Cyclopes neritea (Linnaeus, 1758) (Fig. 1, Fig. 2)

Los datos referentes a la especie actual C. neritea se han obtenido a partir del estudio del material siguiente: Tavira (Algarve, S Portugal), 6 ejem.; Mar Menor (Murcia, E España), 2 ejem.; Delta de l'Ebre (Tarragona, NE España), 53 ejem. (3 juv.); Etang de Leucate (Aude, SE Francia), 38 ejem. (8 juv.); Camargue (Bouches-du-Rhône, NE Francia), 18 ejem.; Costinti (Rumanía), 4 ejem.

Cyclopes gigantissimus (Bevilacqua, 1928)

<table>
<thead>
<tr>
<th>Número de datos</th>
<th>24</th>
<th>24</th>
<th>24</th>
<th>24</th>
<th>24</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor máximo</td>
<td>10.00</td>
<td>18.05</td>
<td>14.25</td>
<td>10.45</td>
<td>2.07</td>
<td>0.88</td>
</tr>
<tr>
<td>Valor mínimo</td>
<td>3.70</td>
<td>13.85</td>
<td>10.00</td>
<td>6.95</td>
<td>1.35</td>
<td>0.77</td>
</tr>
<tr>
<td>Media</td>
<td>6.20</td>
<td>11.59</td>
<td>9.86</td>
<td>6.45</td>
<td>1.68</td>
<td>0.80</td>
</tr>
<tr>
<td>Mediana</td>
<td>6.23</td>
<td>11.33</td>
<td>9.10</td>
<td>7.60</td>
<td>1.88</td>
<td>0.79</td>
</tr>
<tr>
<td>Desviación típica</td>
<td>1.27</td>
<td>2.09</td>
<td>1.67</td>
<td>1.20</td>
<td>0.10</td>
<td>0.03</td>
</tr>
<tr>
<td>Varianza</td>
<td>1.60</td>
<td>4.37</td>
<td>2.80</td>
<td>1.45</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>

PEDASSOS (Peloponésio, S Grecia)

<table>
<thead>
<tr>
<th>Número de datos</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor máximo</td>
<td>5.20</td>
<td>9.55</td>
<td>7.30</td>
<td>6.00</td>
<td>2.00</td>
<td>0.79</td>
</tr>
<tr>
<td>Valor mínimo</td>
<td>4.00</td>
<td>7.65</td>
<td>5.60</td>
<td>4.20</td>
<td>1.71</td>
<td>0.66</td>
</tr>
<tr>
<td>Media</td>
<td>4.56</td>
<td>8.47</td>
<td>6.44</td>
<td>5.05</td>
<td>1.88</td>
<td>0.76</td>
</tr>
<tr>
<td>Mediana</td>
<td>4.48</td>
<td>8.33</td>
<td>6.35</td>
<td>4.90</td>
<td>1.86</td>
<td>0.77</td>
</tr>
<tr>
<td>Desviación típica</td>
<td>0.35</td>
<td>0.67</td>
<td>0.52</td>
<td>0.57</td>
<td>0.08</td>
<td>0.03</td>
</tr>
<tr>
<td>Varianza</td>
<td>0.12</td>
<td>0.45</td>
<td>0.27</td>
<td>0.33</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Cyclopes gigantissimus (Bevilacqua, 1928)

<table>
<thead>
<tr>
<th>Número de datos</th>
<th>50</th>
<th>50</th>
<th>50</th>
<th>50</th>
<th>50</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor máximo</td>
<td>7.15</td>
<td>12.60</td>
<td>10.00</td>
<td>7.90</td>
<td>2.17</td>
<td>0.82</td>
</tr>
<tr>
<td>Valor mínimo</td>
<td>4.35</td>
<td>8.70</td>
<td>6.90</td>
<td>5.05</td>
<td>1.69</td>
<td>0.77</td>
</tr>
<tr>
<td>Media</td>
<td>5.47</td>
<td>10.69</td>
<td>8.39</td>
<td>6.23</td>
<td>1.96</td>
<td>0.79</td>
</tr>
<tr>
<td>Mediana</td>
<td>5.48</td>
<td>10.55</td>
<td>8.33</td>
<td>6.30</td>
<td>1.96</td>
<td>0.79</td>
</tr>
<tr>
<td>Desviación típica</td>
<td>0.60</td>
<td>0.96</td>
<td>0.73</td>
<td>0.68</td>
<td>0.10</td>
<td>0.01</td>
</tr>
<tr>
<td>Varianza</td>
<td>0.36</td>
<td>0.92</td>
<td>0.63</td>
<td>0.46</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Cyclopes gigantissimus (Bevilacqua, 1928)

<table>
<thead>
<tr>
<th>Número de datos</th>
<th>18</th>
<th>18</th>
<th>18</th>
<th>18</th>
<th>18</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor máximo</td>
<td>7.65</td>
<td>15.90</td>
<td>12.45</td>
<td>9.80</td>
<td>2.15</td>
<td>0.81</td>
</tr>
<tr>
<td>Valor mínimo</td>
<td>6.85</td>
<td>13.70</td>
<td>10.90</td>
<td>7.80</td>
<td>1.88</td>
<td>0.77</td>
</tr>
<tr>
<td>Media</td>
<td>7.35</td>
<td>14.57</td>
<td>11.45</td>
<td>8.68</td>
<td>1.98</td>
<td>0.79</td>
</tr>
<tr>
<td>Mediana</td>
<td>7.38</td>
<td>14.50</td>
<td>11.43</td>
<td>8.65</td>
<td>1.99</td>
<td>0.78</td>
</tr>
<tr>
<td>Desviación típica</td>
<td>0.24</td>
<td>0.57</td>
<td>0.41</td>
<td>0.45</td>
<td>0.08</td>
<td>0.01</td>
</tr>
<tr>
<td>Varianza</td>
<td>0.06</td>
<td>0.33</td>
<td>0.17</td>
<td>0.20</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 2. Resumen de los valores (en mm) de los parámetros medidos en las dos especies, agrupados por yacimientos. H = altura; D = diámetro; A = anchura; Ho = altura de la abertura. (Véase significado de estos parámetros en Tabla 1).

Al igual que C. gigantissimus, C. neritea elimina el ápice de la concha al llegar al final de su crecimiento, sólo se han encontrado un pequeño número de individuos que todavía lo conservan. Esto plantea la cuestión de cuáles...

son los caracteres en que debe basarse la diferenciación entre las formas adultas de las dos especies.

Muchos autores (véase la sinonimia) indican que las formas fósiles (que consideran como *C. neritea*) se caracterizan por tener dimensiones mayores que las vivientes. Cerulli-Irelli (1911) da 19,5 mm como valor máximo para su material del Plioceno, mientras que el valor máximo hallado en la bibliografía para las formas actuales es de 17 mm (Parenzan, 1970; Le Roux, 1994). El mayor valor del diámetro (D) medido por nosotros para *C. neritea* es de 16,3 mm (Leucate, Francia) y no se halló diferencias estadísticamente significativas de las medias de la relación D/H entre las dos poblaciones de *C. neritea* medidas (mediante el test t - Student, a un nivel de significación = 0,05). Como puede verse (Tab. 2), las dimensiones de ambas especies varían según la localidad de origen. Así, mientras que *C. migliorinii* alcanza medidas máximas mayores que *C. neritea*, esto no es constante en general. Los ejemplares de *C. neritea* de algunas localidades son mayores que los de *C. migliorinii* de otras localidades. Por tanto, este carácter no sirve para la diferenciación. A pesar de ello, se observan diferencias poblacionales en algunos parámetros. Así, la comparación mediante el test t - Student (a un nivel de significación = 0,05) de los valores medios de las relaciones D/H y A/D de las dos especies (Tab. 1), indica que las diferencias son estadísticamente significativas. Es decir, para un mismo valor de D el valor de H en *C. neritea* es menor que en *C. migliorinii*, y el valor de A es un poco mayor en *C. migliorinii* que en *C. neritea*.

Por otra parte, Bevilacqua (1928, p. 173) indica las siguientes diferencias morfológicas entre *C. migliorinii* y *C. neritea*: un mayor cubrimento de la espira por parte de la última vuelta, la región ventral más convexa y la presencia de denticulos labrales, en la especie fósil. Otros detalles que se pueden añadir, a partir del material que hemos estudiado, son: última vuelta más uniformemente convexa en los fósiles y más plana en los actuales, callosoidad labral más ancha y callosoidad columelar más marcadamente dilatada sobre la espira en la forma pliocena.

La mayoría de estas diferencias no representan una discontinuidad morfológica entre *C. migliorinii* y *C. neritea*. Los denticulos labrales, el grosor de la callosoidad labral y la expansión de la callosoidad columelar no son exclusivas de ninguna de las dos especies. Los denticulos del labro también se han observado en 7 ejemplares de *C. neritea* de Camargue (Francia), la expansión de la callosoidad columelar sobre la espira se ha observado en 23 de los 68 especímenes de *C. neritea*, la callosoidad labral de *C. neritea* puede ser tan ancha como en *C. migliorinii* (en 39 de los 68 individuos medidos). Con relación a los otros detalles mencionados, la variabilidad de *C. neritea* es también grande, tal como describe Pallary (1919), y se da una amplia coincidencia con *C. migliorinii*.

No obstante, uno de estos caracteres, aparte de la protoconcha, parece ser diferente, de forma constante, en las dos especies: en la forma actual, la última vuelta cubre una parte menor de la penúltima vuelta que en la forma fósil. En *C. neritea* la sutura de la última vuelta queda claramente separada de la sutura de la penúltima vuelta, mientras que en *C. migliorinii* ambas suturas se hallan casi en contacto y, en algún caso, la última vuelta llega a cubrir la sutura de la anterior (compárense las figuras de cada especie en la Fig. 2).

En consecuencia, para las formas adultas, se propone considerar como *C. migliorinii* aquellos individuos en los cuales la última vuelta cubre totalmente la anterior, y se
assume que estos especímenes tenían una protoconcha de 2,5 vueltas como la descrita. El nombre *C. neritea* se reserva para aquellos individuos en los cuales el recubrimiento de la última vuelta deja una clara banda adapical de la penúltima vuelta sin cubrir. Se asume que estos especímenes tienen una protoconcha de 1,5 vueltas como la descrita.

DATOS PALEOEOLÓGICOS

En Monteu Roero (Piemonte, Italia), Pavia (1975) concluye que la malacofauna fósil es el resultado de la mezcla de varias biocenosis. Este autor sitúa *Cyclope* en dos de ellas, correspondientes a arenas costeras bien calibradas y arcillas arenosas lagunares protegidas, con influencia de aguas continentales. En Velerín (Málaga, España), Vera Peláez et al. (1995a) describen una malacofauna transportada y reesentada en facies detrítica gruesa, depositada mediante potentes flujos de tracción, entre los cuales se intercalan facies arenosas depositadas por flujos menos potentes. Estos autores asocian las facies detríticas con la influencia de corrientes fluviales en zona costera. Koutsouveli (1987 y observaciones personales), indica que el yacimiento de Pedassos (Peloponeso, Grecia) corresponde a una acumulación de fauna marina con una importante representación de fauna de aguas salobres. Estos datos permiten suponer que *C. migloirini* ocupaba zonas marinas con influencia más o menos directa, pero siempre importante, de aguas dulces.

Todas estas asociaciones faunísticas corresponden a ambientes de aguas someras. Pavia (1975), para Monteu Roero, les asigna una profundidad entre 6 y 20 m. Este hábitat ocupado por *C. migloirini* no parece muy distinto del ambiente típico donde vive *C. neritea* en la actualidad. Boulic y Tardy (1986a) concluyen que *C. neritea* es una forma típica de lagunas y marismas costeras, donde se halla en altas densidades de población. Es una especie adaptada a amplias variaciones de salinidad y temperatura. La taniotencosis reciente de Tavira (Portugal) presenta una estructura y una asociación faunística equivalente a la de los depósitos del Plioceno de Pedassos (Grecia) (observaciones personales).

Parece que la especie fósil *C. migloirini* tenía los mismos requerimientos ecológicos que la actual *C. neritea*.

REPARTICIÓN ESTRATIGRÁFICA Y GEOGRÁFICA

C. migloirini es, cronológicamente, la primera especie aparecida de su género. Se localiza a partir del Plioceno Inferior pero el momento de su extinción no está bien delimitado. Bevilaqua (1928) indica la presencia de su especie desde el Plioceno (*sensu lato*) hasta el Calabriense (Pleistoceno Inferior). El material que hemos estudiado pertenece al Zanciens (Plioceno Inferior) y al Plasencense (Plioceno medio). Parece claro que actualmente *C. neritea* ha reemplazado a *C. migloirini*. Provisionalmente, se propone considerar *C. migloirini* como especie que existió durante todo el Plioceno y el Pleistoceno Inferior, y *C. neritea* como una especie muy reciente. Por el momento, no hay evidencia de la coexistencia de las dos especies en el tiempo y en el espacio. Se puede asumir, también de forma provisional, que *C. neritea* apareció en algún momento del Pleistoceno posterior al Calabriense.

La distribución geográfica de *C. migloirini* en el Plioceno (Fig. 4) incluye el Mar Egeo (Bevilaqua, 1928; material estudiado) y el norte de Italia (Pavia, 1975; Montefameglio et al., 1979; Ferrero y Merlino, 1992; material estudiado), el Mediterráneo oriental, y toda la cuenca occidental mediterránea, desde la costa del Mar Tirreno (Cerulli-Irelli, 1911; Malatesta, 1974) y Túnez (Fekih, 1975) hasta el sur de la península Ibérica (Vera Peláez et al., 1995b; material estudiado). Podría haberse extendido también por el Atlántico adyacente al estrecho de Gibraltar, ya que las citas de Lécointre (1952) para Marruecos y de Landau (1984) para la Cuenca del Guadalquivir (SO España), corresponden probablemente a esta especie. Su presencia en la costa atlántica es segura en Portugal (Zbyszewski, 1959; material estudiado).

DISCUSIÓN Y CONCLUSIONES

El género *Cyclope* presenta algunas características notables y distintas de los otros nasáridos. Su forma discoideal de perfil lenticular, como consecuencia del enrollamiento de unas vueltas superpuestas en gran medida sobre las anteriores y del seccionamiento del ápice, y la posición de la abertura, casi perpendicular al eje de enrollamiento, es una arquitectura única entre los neogasterópodos.

Las formas del género *Cyclope* del Plioceno y Pleistoceno Inferior mediterráneos pertenecen a una especie distinta de la viviente en la actualidad en la misma región, *C. neritea*, con la cual fue confundida mayoritariamente. La especie fósil debe designarse como *Cyclope migloirini* (Bevilaqua, 1928). La diferencia fundamental entre ambas es la morfología de su protoconcha, multispiral en la forma fósil y uniocular en la forma actual. Aunque a nivel de población se observan diferencias cuantitativas en los parámetros de la teleoconcha, sus teleoconchas son cualitativamente casi idénticas. La diferencia más constante que se ha hallado es el mayor recubrimiento de la última vuelta sobre la penúltima en *C. migloirini*. Los datos paleoecológicos de los yacimientos donde se encuentra *C. migloirini* llevan a la conclusión de que, desde el punto de vista autoecológico, esta especie era equivalente a *C. neritea*. Ambas pueden considerarse especies gemelas (*sibling species*) por el hecho de que comparten los caracteres de la teleoconcha y los requerimientos ecológicos del animal adulto, pero se diferencian claramente por los de la protoconcha, lo cual indica diferentes modos de desarrollo embrionario-larvario.
Con relación a este tipo de especies gemelas, en las cuales los adultos no conservan la protoconcha, se debe hacer una reflexión sobre el papel de los ejemplares tipo. Si los tipos deben servir para establecida la nomenclatura y el individuo elegido como holotipo es adulto, este holotipo podría no ser adecuado al propósito para el que fue designado. Aunque en ningún artículo del Código de Nomenclatura Zoológica se indique que el tipo deba ser un ejemplar adulto (la recomendación 73 C señala la conveniencia de indicar el estado de desarrollo del holotipo), no parece conveniente que el holotipo de un gasterópodo sea simplemente una protoconcha o una forma juvenil poco desarrollada. Este estado del desarrollo no presupe una teleoconcha adulta determinada. Son frecuentes las especies de nasáridos que no se distinguen en su estado larvario (protoconcha) o más juvenil sino en un estado de desarrollo más avanzado. (De Renzi y Martinell, 1979; Martinell, 1982; Gili y Martinell, 1990; Gili, 1991). Por el contrario, en especies gemelas en las que los adultos conservan sus protoconchas, éstas son muy distintas y, en cambio, sus teleoconchas casi no se distinguen (Gili, 1992) con lo que elegir un ejemplar juvenil como holotipo tampoco sería correcto. Debía considerarse la necesidad, para los casos como el de C. migliorini y C. neritea tratado en el presente trabajo, de que la descripción original de la especie contemplara los distintos estados de desarrollo, especialmente el estado larvario (protoconcha), siempre que hubiera suficiente seguridad de que todos ellos pertenecen a la misma serie ontogenética. En estos casos la descripción basada en un ejemplar, y solamente uno, el holotipo, tiene los efectos contrarios a aquellos para los cuales los tipos fueron propuestos.

C. migliorini es una especie extinguida que vivió durante todo el Plioceno y parte del Pleistoceno en la región mediterránea y del Atlántico adyacente, aunque no hay suficientes datos para asegurar el momento de su extinción. En algún momento del Pleistoceno dio lugar a la actual C. neritea que la sustituyó en toda su área de distribución mediterránea. Esta repartición estratigráfica da una longevidad para la especie C. neritea muy inferior a la que se le suponía. Con ello se demuestra que la revisión sistemática del material tratado es un importante requisito previo en los estudios de tendencias macroevolutivas (Gili y Martinell, 1994).

AGRADECIMIENTOS

Nuestro agradecimiento al Dr. G. Pavia (Universidad de Torino) que nos proporcionó parte del material utilizado, y a las Dras. Rosa Domènech y Marta Solsona (Universitat de Barcelona) por sus comentarios críticos y ayuda en la elaboración del original. Hemos recibido consejo y ayuda del Servei de Microscòpia Electrònica (Universitat de Barcelona) y del Servei de Dibuix i Disseny Gràfic (Universitat de Barcelona, Divisió III) en la obtención de las imágenes del S.E.M. y de las figuras que acompañan el texto. Las macrofotografías de los ejemplares son obra del Sr. J. M. Moralez. Este trabajo se enmarca en el Proyecto de Investigación DGICYT PB94-0946 y en la Acción Integrada Hipano-Portuguesa HP96-60.

BIBLIOGRAFÍA

Ferrero E. e Merlino, B.1992. Ricostruzione paleoecologica

Martinell, J. 1982. Estudio de los Buccinacea (Neogastro-

Manuscrito recibido: 15 de mayo, 1998
Manuscrito aceptado: 28 de noviembre, 1998