Tityosteus, A MARINE FISH (ARTHRODIRA, HOMOSTIIDAE) FROM THE EMSIAN OF ARAGÓN, SPAIN, AND ITS DISTRIBUTION

Elga MARK-KURIK¹ and Peter CARLS²

¹ Institute of Geology, Tallinn University of Technology, Estonia Avenue 7, 10143 Tallinn, Estonia. E-mail: kurik@gi.ee
² Institut für Umweltgeologie, Technische Universität, Braunschweig, Pockels-Str. 3, D 38106, Germany.

Mark-Kurik, E. and Carls, P. 2004. Tityosteus, a marine fish (Arthrodira, Homostiidae) from the Emsian of Aragón, Spain, and its distribution. [Tityosteus, un pez marino (Arthrodira, Homostiidae) del Emsiense de Aragón, España, y su distribución.] Revista Española de Paleontología, 19 (2), 139-144. ISSN 0213-6937.

ABSTRACT

A right marginal plate (over 11 cm long) of Tityosteus cf. rieversae Gross, 1960, emend., has been found in the late part of the Early Emsian (late Zlichovian) in the Mariposas Fm. of the Eastern Iberian Cordillera in southern Aragón. The palaeoecological conditions correspond to a hemipelagic ensialic basin, with predominant elements of Hercynic biofacies but still with photic bottom. The Emsian genus Tityosteus is now known from the Hunsrück Schiefer of Germany and the closely connected Ibero-Armorican Trough and also from the more distant Minusinsk Basin of southern Siberia. Palaeo-oceans between western Europe and southern Siberia were no zoogeographical barriers for these large, possibly microphagous fishes in open sea. The name of the type species of Tityosteus is emended.

Keywords: Placodermi, marginal plate, palaeoecology, palaeozoogeography, late Zlichovian.

RESUMEN

Se describe una placa marginal derecha (más de 11 cm de longitud) de Tityosteus cf. rieversae Gross, 1960, emend., de la parte tardía del Emsiense Inferior (Zlichoviense tardío) de la Fm. Mariposas en la Cordillera Ibérica Oriental (sur de Aragón). Las condiciones paleoecológicas corresponden a una cuenca ensialica, hemipelágica, con elementos predominantes de biofacies hercínica, pero aún con fondo fótico. Se comenta la distribución del género Tityosteus en las Pizarras del Hunsrück en Alemania y en la cercana Cuenca Ibero-Armoricana como también en la más distante Cuenca de Minusinsk de Siberia suroccidental. Los paleoocéanos existentes entre Europa occidental y Siberia meridional no serían barreras zoogeográficas para estos grandes peces de mar abierto, posiblemente micrófagos. Por último, se enmienda el nombre de la especie típica de Tityosteus.

Palabras clave: Placodermi, placa marginal, paleoecología, paleozoogeografía, Zlichovienne tardío.

INTRODUCTION

During a joint prospection for remains of early vertebrates in the Eastern Iberian Cordillera, guided by P. C. in summer of 1986, Dr. Hermann Mader, then holding a postdoc DFG fellowship at the Technical University of Braunschweig, found the disarticulated placoderm bone described here. The specimen was stratigraphically assigned and prepared by P. C., and the palaeoichthyological study was carried out by E. M.-K.

The locality has the U.T.M. co-ordinates X:662.360, Y:4551.750 on the topographical map 1 : 25,000, no. 466-I, Villar de los Navarros; this corresponds to X:819.900, Y:725.170 on the geological map 1 : 50,000, no. 466, Moyuela (formerly Blesa). It is at the western one of two creeks that bear the name Regajo, near a garden in the area called Parideras. There is a steep slope SE above a left bend of the creek, 0.75 km N of the road from Bádenas to Loscos, 2.5 km SE of the church of Santa Cruz de Nogueras, within the bounds of Loscos.

https://doi.org/10.7203/sjp.19.2.20528
The block with the fossil had fallen out of the steep outcrop and was found as float in the creek Regajo. It stems from one of the thicker packs of shale in the upper part of the section Regajo-Parideras. At this site, upper parts of the submember d4bt of the Mariposas Fm. are exposed. According to the local conditions, the shale layer with the bone belongs most probably to bed 162 or to its closest vicinity. Shale bed 162 is 1.2 m thick and its top is 0.7 m below the first limestone bed (165) with goniatites.

The Mariposas Fm. (local symbol d4) is 200 m thick. It consists mainly of shales, but the most characteristic levels are well bedded shelly, crinoidal, and partly marly limestones, which are concentrated in several intervals with thinner shale interbeds. All levels and faunas are laterally widely persistent, which allows a detailed lithostratigraphic and biostratigraphic subdivision throughout the region. The Mariposas Fm. ranges from the final Siegenian (in traditional sense; base of Middle excavatus Zone as marked at 114 m in the Zinziphan limitotype section of the Emsian, non gronbergi Zone) into an early part of the Late Emsian (early within the serotinus Zone). It has a well recognizable succession of numerous marine faunas including conodonts. The biofacies fluctuate between shallow neritic and hemipelagic conditions, according to frequent changes in water depth, hydrodynamics, and fine clastic input. Repeatedly, dacyroconarids occur. This allows the detailed correlation of the historical Rhenish stages and of their subdivisions with the Bohemian stages and with the conodont zonation. In the older faunas (member d4a), elements of neritic (Rhenish) biofacies predominate, especially strong-ribbed spiriferids. From the passage of member d4a to member d4b onward, with early Nowakia (Dmitriella), early in the gronbergi Zone (in its sense practised in Europe), Bohemian trilobites and more and more elements of pelagic (Hercynic) biofacies appear, including orthoconic cephalopods, epiplankton (tiny Chonetacea) and plankton (Dacyroconarida). The contents in pyrite and organic matter increase upwards. The faunal change corresponds to a long-term gradual deepening that culminates at the Daleje Event with clear waters little below storm wave base. The occurrence of Tityosteus is already close to the maximum of the pelagic influence, but the predominant benthic trilobites with large eyes (mainly phacopids, some scutelluids) still indicate photic conditions in clear waters; additionally, long-spined trilobites are present that were probably swimming (Odontocephelidae). Two cephalopod beds (165 and 167), beginning 0.7 m above the shale bed 162, contain Aneto- ceras (Érbenoceras), Palaeogoniatites, and Mimagoniatites zorgensis as well as various orthoconic cephalopods (some over 15 cm thick) and have furnished Nowakia barrandeii at most localities. The Tityosteus bed may still be in the final part of the Nowakia praecursor Zone. In terms of the prevailing (actually unstable) conodont zo-
Genus *Tityosteus* Gross, 1960

Type species: *Tityosteus rieversae* Gross, 1960, emend.

Nomenclatural remark: The species name, *T. rieversi*, which is a male genitive, has to be emended, as it was Mrs H. Rievers who gave the holotype to W. Gross for its description, and as the intention was to honor her, for which purpose the female genitive *rieversae* is appropriate.

Diagnosis (from Otto, 1992): A large arthrodire with the following combination of characters: T-shaped rostral plate. Preorbital plate wider than long and without preorbital process. Supraorbital sensory line runs along the whole length of preorbital plate. Anterolaterally placed orbital opening is situated at the lateral end of the suture of preorbital and postorbital plates and anteromesially of it. Anterior margin of central plate convex, its lateral margin straight; central plate shows no pit lines. Trunk shield with a median dorsal plate with approximately equal length and width (length/width = 0.9); anterior dorsolateral plate with long condyle and small subglenoidal process; anterior lateral plate short and triangular. Ornament consists of sharp-topped tubercles with stellate bases.

Species content: Three taxa, all from the Emsian, Early Devonian: (1) the type species *Tityosteus rieversae* Gross, 1960, emend., locality Bundenbach, Rhineland, Germany, Hunsrück Schiefer; (2) *Tityosteus orientalis* Mark-Kurik, 1982, locality Perevozinskoe, South-Minusinsk Depression, southwestern East Siberia, Russia, Tashtyp Formation (Krasnov and Kurik, 1982); (3) *Tityosteus cf. rieversae* Gross, 1960, emend., locality Regajo-Parideras, Eastern Iberian Cordillera, southern Aragón, Spain, Mariposas Formation. Lehman (1976), on the basis of some poorly exposed remains, reported the occurrence of *Tityosteus* sp. from the Akka region, southern Morocco; after the complete preparation of the material, Lelièvre (1984) established that it belongs to a new Late Emsian homostiid, *Antineosteus* Lelièvre, 1984. It is noteworthy that the fish remains of the Hunsrück Schiefer, including those of *T. rieversae*, are from late within the Early Emsian, as is the Spanish *T. cf. rieversae* from the Mariposas Formation.

Figure 1. Tityosteus cf. rieversae Gross, 1960, emend. Right marginal plate, MPZ 2003/825. Scale bar is 1 cm.

The general shape and overlap areas of the plate and the position of the sensory line grooves can be well traced and its configuration can be restored (Fig. 3A). The length of the fragmentary plate is 11.2 cm and its maximum width is 4.8 cm. When restored, the length could be about 15 cm. The plate is up to 3.5 mm thick. In *T. rieversae* the right marginal plate is 21 cm long and the left one 20.5 cm (Otto, 1992). The ornament of the plate consists of coarse tubercles, their density being about 4.7 per cm. The ornamented surface of the marginal plate is much longer than wide; this shape is characteristic for the homostiids *Tityosteus* Gross, 1960, *Antineosteus* Lelièvre, 1984, *Taemasosteus* White, 1952, and *Homostius* Asmuss, 1856 (see Otto, 1992; fig. 7; Fig. 3 this paper). A very long and narrow marginal plate was described in a new Emsian representative of Homostiidae from Australia, *Dhanguura johnstoni* Young, 2004; this arthrodire has a narrow and long skull roof. The main
The difference between the homostiid marginal plates lies in the position and length of the sensory line grooves. In the Early Devonian homostiids (*Tityosteus, Antineosteus, Taemasosteus*) the grooves of the infraorbital sensory line (ioc.ot) and the postmarginal sensory line (pmc) run close to the sutures with the central (C) and paranuchal (PNu) plates and parallel to them (Fig. 3A-C). In the Middle Devonian *Homostius* the infraorbital sensory line (ioc.ot) runs along the midline of the ornamented surface or is situated slightly closer to the lateral margin of the plate (Fig. 3D). In *Tityosteus* the postmarginal sensory line (pmc) is longer than in *Homostius*, and it is the longest in *Antineosteus*.

The marginal plates of *Tityosteus rieversae* and *Tityosteus cf. rieversae* are fairly similar (Fig. 3B, 3A). In the latter the marginal plate and its overlap areas are somewhat wider and the posterior portion of the plate is longer. These differences may be due to intraspecific variability. The Spanish *Tityosteus* material is too limited to determine the species definitely. Judging by the marginal plate it is not excluded that we have in Aragón the same species as in the Rhineland, whereas in the Minusinsk Depression, Siberia, a different species (*T. orientalis*) occurs.

Relationships

Lelièvre (1988) discussed the relationships of *Tityosteus, Antineosteus, Homostius*, buchanosteids, and some other primitive brachythoracid arthrodiras by means of a cladistic analysis. In a later classification of brachyto-
Palaeoecological and palaeogeographical remarks

Homostiids are large or very large arthrodires of late Early Devonian and Middle Devonian age. They were probably microphagous, because the more completely preserved forms have toothless or only finely denticulated lower jawbones (inferognathals). Toothless inferognathals are known in *Homostius* (Heintz, 1934; Mark-Kurik, 1992) and finely denticulated ones in *Antineosteus* (Lelièvre, 1984). The inferognathals of *Tityosteus* have not been found but could belong to either of these types. Denison (1978) suggested that *Homostius* fed on large quantities of plankton or small fry. According to Mark-Kurik (1992) this arthrodire might have resembled in its size and habitat the recent whale shark *Rhinodon typicus*. Another gigantic arthrodire with toothless inferognathals, *Carolowilhelmina* Mark-Kurik and Carls, 2002 in the Eifelian of Aragón, from similar facies as *Tityosteus* (Mark-Kurik and Carls, 2002), could have had the same kind of diet. In the paper mentioned, *Carolowilhelmina* was called a predator as a result of a minor error.

In Rhineland, Aragón, and Minusinsk Basin the representatives of the genus *Tityosteus* occur in predominantly Hercynic biofacies with good connections to open seas (in S and SE Europe, the Palaeotethys). Lelièvre (1984) discussed the distribution of the Early Devonian homostiids, including the Spitsbergen species of *Homostius, H. cf. arcticus* Heintz 1934 (see Ørvig, 1969: p. 283, fig. 4A). The latter appeared to be the only form coming from the Northern Hemisphere of the Devonian times (Lelièvre, 1984: fig. 21). Possible migration routes were indicated through Turkey, Iran, Afghanistan or through South America. According to the palaeogeographic reconstruction used by Lelièvre, three homostiids from the Devonian Southern Hemisphere (*Tityosteus rieversae, Antineosteus, Taemasosteus*) lived in areas fairly distant from each other but close to the palaeoequator. Young (1987: fig. 2) used a different palaeogeographical reconstruction. He showed *Antineosteus* and *Taemasosteus* in Gondwana, whereas *Homostius* and *Tityosteus orientalis* would live in Euramerica and Siberia, respectively. According to Young, most of the homostiid occurrences had a meridional arrangement and remained roughly between 35° of northern and southern latitudes. In this reconstruction, only *T. orientalis* is more in the North, in the temperate zone. Thus, most of these big fishes appear as inhabitants of the tropical and / or subtropical zones.

The Early Emsian occurrences of *Tityosteus* in the Rhineland and in Aragón must have been closely con-

nected (Carls, 2003: figs. 2-3), because even turbidicolous brachiopod communities of shallow neritic environments that could not spread across wide oceans, had just migrated from Mauro-Ibero-Armorica (Ibarmaghi) into the Rhineland, as soon as the facies there ceased to be deltaic (Carls and Valenzuela-Ríos, 1998). In general, common shallow neritic (near shore) faunas make close palaeogeographic connections probable, whereas large fishes, like *Tityosteus*, that could cross open waters, may be indicative of palaeoclimatic similarities but not of palaeogeographic distances. As the plate kinematic models for the Devonian oceans are still uncertain and as the distribution of these homostiids does not contribute a closer hint to the palaeogeography, figure 5 is restricted to an image of their presently known occurrences.

ACKNOWLEDGEMENTS

The fossil described here has been recognized in the field by Dr. H. Mader as a placoderm remnant. Elga Mark-Kurik thanks the Estonian Science Foundation (Grant 5275) for its financial support. We kindly thank Dr. A. Blieck, Lille, for his critical and useful remarks on the manuscript.

REFERENCES

Manuscrito recibido: 10 de noviembre, 2003
Manuscrito aceptado: 1 de septiembre, 2004