Early Aptian corals from Peñascal (Bilbao, N Spain)

Hannes LÖSER†, Jone MENDICOA2 & Pedro Ángel FERNÁNDEZ-MENDIOLA2

1 Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Blvd. Luis Donaldo Colosio S/N y Madrid, 83250 Hermosillo, Sonora, Mexico; loeser@paleotax.de
2 Universidad País Vasco, Facultad Ciencia y Tecnología, Departamento Geología, Apdo 644, 48080-Bilbao, Spain; jonemendicoa@gmail.com, kepa.fernandezmendiola@ehu.eus

*Corresponding author

ABSTRACT

From two horizons in the lower Aptian Peñascal limestone Formation south of Bilbao 22 coral species are reported. The corals belong to the scleractinian families Actinastraeidae, Eugyridae, Haplaraeidae, Latomeandridae, and Solenoceniidae, and the octocorallian family Helioporidae. The stratigraphic distribution of the species lies between the Berriasian to Cenomanian, but most species have a distribution between the Barremian and Albian. The faunas show most palaeobiogeographical relationship to faunas from the Hauerivian to Albian of the European Boreal, the Western Atlantic and the Western Tethys.

Keywords: Scleractinia, Octocorallia, fossil, taxonomy, Cretaceous, Aptian.

RESUMEN

Se describen 22 especies de corales pertenecientes a dos horizontes de la Formación calizas de Peñascal del Aptiense inferior en el sur de Bilbao. Los corales pertenecen a las familias Actinastraeidae, Eugyridae, Haplaraeidae, Latomeandridae, y Solenoceniidae del orden Scleractinia, y a la familia Helioporidae del orden Helioporacea. La distribución estratigráfica de las especies abarca un rango desde Berriasien hasta Albiense. La fauna revela correlaciones paleobiogeográficas con faunas del Hauerivien al Albiense del Boreal Europeo, Atlántico occidental y el oeste del Tethys.

Palabras claves: Scleractinia, Octocorallia, fósil, taxonomía, Cretácico, Aptiense.
1. INTRODUCTION

Although the early Aptian is one of the periods with the most abundant co-existing coral genera and species in the Cretaceous (Löser, 2016), little data is reported from northern Spain. There are some reports from Aragón (mainly around Teruel) and from Cataluña (Ulldecona; Löser et al., 2005). From the Basque country, material is only reported from the Peñacerrada diapir (Sachs, 2002). Here, another two stratigraphic intervals containing coral faunas in the vicinity of Bilbao are described.

2. STUDY AREA

2.1. Geological setting

The investigation was carried out in the Peñascal quarry (Fig. 1). This lies in the southern outskirts of Bilbao city, just SW of the Supersur highway. The Peñascal quarry lies in the Basque-Cantabrian Basin, and belongs to the Basque Arch, the western prolongation of the north Pyrenean Zone, encompassing the Basque Paleozoic Massifs and their westerly adjunct Mesozoic and Cenozoic sedimentary cover (Rat, 1959). More precisely, the quarry lies in the northern margin of the Bilbao Anticlinorium, with a NW-SE running axis-trend. The quarry outcrops occur south of Arnotegi fault. Several faults of this Arnotegi system reveal synsedimentary activity and were responsible for the diversity and partitioning of sedimentary settings during the Aptian. Deposition occurred as the result of extensional rifting movements related to the opening of the Bay of Biscay (Boillot, 1984; Olivet, 1996; Le Pichon, et al., 1971; Sibuet, et al., 2004; García-Mondejar, et al., 2018). Later in the Alpine-Pyrenean orogeny, those units were folded and fractured to its present situation and structure following compressive movements at the boundary of the Iberian and European tectonic plates.

2.2. Stratigraphy and sedimentology

Two coral horizons have been investigated. They stand respectively at the base and upper part of the Peñascal limestones. Biostratigraphic data indicate that the corals belong to the Dufrenoyia furcata Zone of the early Aptian, based on orbitolinid and ammonite correlation (Fernández-Mendiola et al., 2017).

Figure 1. Geological map of the area south of Bilbao (Spain), with location in the studied area at the Peñascal quarry, along the Peñascal limestone Formation oriented NW-SE. Mb = Member; Fm = Formation. The Peñascal quarry forms part of the S-N Igartu section (in red) from the Pagasarri Mountain (671 m) to the Arnotegi area, described in Fernández-Mendiola et al. (2017).
The first horizon is located from metre 12 to 15 of the Peñascal quarry section (Fig. 2). Corals occur within a 3 metre-thick unit of wavy, slightly argillaceous limestone that forms the base of the Peñascal Formation. This unit is transitional between the underlying marls of the Ereza Formation and the overlying micritic limestones of the Peñascal Formation. The underlying marls contain echinoderms, local burrow structures and scattered plants debris. They have been interpreted as estuarine siliciclastic deposits (García-Garmilla, 1987; Fernández-Mendiola et al., 2017). The marls gradually evolve to marly limestones and wavy limestones. The latter are fine-grained packstones to wackestones with corals. The succession records a marine transgression from coastal environments to a mixed carbonate-siliciclastic marine shelf. Corals growth forms are massive and colonies reach sizes up to 20 centimetres. The coral facies are replaced upward by micritic limestones with requieniid rudists. This vertical evolution reveals a shallowing upward trend and the rudist-dominated carbonate muddy environment reflects siliciclastic-free restricted settings.

The second horizon occurs from metre 140 to 163 of the section (Fig. 2). The succession is divided into three sub-units. Sub-unit 1 (metres 15 to 40) consists of requieniid limestones with occasional miliolid foraminifera and several packages of wavy limestones with marly partings. Two paleokarst horizons occur at metres 20 and 38 respectively suggesting periods of subaerial exposure of the carbonate platform. The sub-unit is interpreted as an inner carbonate platform with occasional phases of turbid water responsible for the argillaceous sedimentary imprint. Sub-unit 1 shows absence of coral facies.

The second sub-unit spans from metre 40 to 110. It consists of limestones dominated by requieniids punctuated with several horizons of scattered massive and/or ramose corals (Latohelia) that occur together with rudists. In this second sub-unit, three paleokarst horizons are recognised at metres 57, 80 and 89. These facies associations of rudists and corals reveal more open-water conditions in the shallow-water carbonate platform with respect to sub-unit 1.

The third sub-unit spans from metre 110 to 163, and consists of alternating massive and wavy limestone intervals. Corals in this sub-unit are overall more abundant than rudists except for the beds spanning from 116 to 120 m, which are requieniid-dominant. At metre 145 rudists recover and coexist with corals. Except for those two intervals, coral dominance suggests more open-water conditions than sub-unit 2. The succession indicates a transgressive trend from base to top of the Peñascal limestone.

We have sampled the upper part of the Peñascal limestones from metre 140 to 163, coral horizon-2 in Figure 2, for thin section and taxonomic analyses. Massive coral-head type forms alternate vertically with ramose
corals, both in massive micritic limestones and in wavy argillaceous marly-micritic limestones. The marls tend to occur in isolated partings less than one centimetre-thick, and correspond to periods of increased turbid waters on the sea-floor. From metre 163 up the drowning of the carbonate platform is marked by the end of the Peñascal limestones and the encroachment of the overlying Bilbao marlstones. Those marlstones were sedimented in outer slope environments dominated by settling of silts and muds and inhabited by oysters, bivalves, echinoderms and ammonites.

3. MATERIAL AND METHODS

About 30 corals were collected from horizon 1 and about 50 from horizon 2. Finally six specimens from horizon 1 and 31 specimens from horizon 2 could be assigned to a species. The corals from horizon 1 are strongly recrystallized and therefore poorly preserved. Corals from horizon 2 are partly better preserved. Coral specimens were cut and polished. Thin sections in both transversal and longitudinal orientation were prepared where possible. Thin sections were scanned by passing light through them using a flatbed scanner with an optical resolution of 6,400 dpi. Scanned images were then transferred to grey scale bit maps. Their quality was amended by histogram contrast manipulation (contrast stretching) where possible.

Corallite dimensions were systematically measured using the PaleoTax/Measure (http://www.paleotax.de/measure). For each type of measurement (calicular diameter and distance, width and distance of calicular row), in one thin section, the following values were obtained:

- n: number of measurements
- min–max: lowest and highest measured values
- µ: arithmetic mean (average)
- s: standard deviation
- v: coefficient of variation according to K Pearson
- µ ± s: first interval

The obtained values were compared against those for specimens in worldwide fossil coral collections, and an associated image database (ca. 26,900 specimens, ca. 15,200 illustrated, located in the Estación Regional de Noroeste (ERNO), Sonora, Mexico). Data storage and processing were carried out using the PaleoTax database program (Löser, 2004).

The material is kept at the Museo de Ciencias Naturales de Álava. Since final collection numbers are not provided before publication, here the field numbers are given. These numbers are also valid for the thin sections.

4. SYSTEMATIC DESCRIPTION

The preliminary classification system introduced in Löser (2016) is used here. This system does not apply suborders, but superfamilies that group families together. Contrary to the former classification system based on suborders, superfamilies may constitute monophyletic groups. The basic characteristic for the distinction of superfamilies is the relative size of the trabeculae (in the ratio of the trabeculae to the septa). Further distinction is made based on the presence or absence of synapticulae and the septal perforation. Detailed description of superfamilies, families and genera are given in Löser (2016) and are not repeated here. Since the species within a genus are entirely distinguished on the basis of morphometric data (dimensions of the corallite, number and/or density of septa), descriptions of species are not given.

The distribution data are almost entirely based on well-examined material. Material only mentioned in the literature and material not available or insufficiently described and illustrated in the literature was not taken into account. To obtain better insight into the distribution patterns of the coral fauna of the Peñascal area, much unpublished material was included.

The abbreviations used in the synonymy lists follow Matthews (1973):
- *: Earliest valid publication of the species name.
- ?: The assignation of this description to the species is doubtful (so marked quotations are not reflected in the stratigraphic and palaeobiogeographic distribution).
- p: The described material belongs only in part to the species concerned.
- v: the specimen was observed by the first author.

Abbreviations of measurements are: c, calicular diameter (outer diameter); ccd, distance between calicular centres; cl, calicular diameter (lumen, calicular pit); clmax, large lumen; clmin, small lumen; cmax, larger outer calicular diameter; cmin, smaller outer calicular diameter; crd, distance of calicular series; crw, width of calicular series; septa, number of septa in the adult corallite; sd, density of septa.

Phylum CNIDARIA Milne Edwards, 1857
Class ANTHOZOA Ehrenberg, 1834
Order SCLERACTINIA Bourne, 1900
Superfamily Actinastraeoidea Alloiteau, 1952
Family Actinastraeidae Alloiteau, 1952
Genus Stelidioseris Tomes, 1893

The genus was revised by Löser (2012).
Stelidioseris icaunensis (Orbigny, 1850)
(Figs 3a-c)

Material: 140312; 2 thin sections.

Synonymy:
v 1850 Prionastraea icaunensis; Orbigny, (2), p. 93.
v 1871 Astrocoenia Kunthi; Bölsche, p. 56, Pl. 12, Fig. 7.
v 1897 Astrocoenia urgoniensis; Koby, p. 58, Pl. 15, Figs. 5-8.
v 1924 Astrocoenia hexamera n.sp.; Fritzsche, p. 318, Pl. 3, Fig. 7.
v 1933 Astrocoenia budaensis n.sp.; Wells, p. 78, Pl. 6, Fig. 3.

Dimensions: (140312). See table below:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>µ</th>
<th>s</th>
<th>cv</th>
<th>µ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>clmin</td>
<td>25</td>
<td>1.80-2.30</td>
<td>2.05</td>
<td>0.17</td>
<td>8.5</td>
<td>1.87-2.22</td>
</tr>
<tr>
<td>clmax</td>
<td>25</td>
<td>2.54-3.45</td>
<td>2.99</td>
<td>0.28</td>
<td>9.5</td>
<td>2.71-3.28</td>
</tr>
<tr>
<td>ccd</td>
<td>25</td>
<td>2.38-3.97</td>
<td>3.25</td>
<td>0.43</td>
<td>13.4</td>
<td>2.81-3.69</td>
</tr>
<tr>
<td>septa</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, Furcata Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140312).

Other occurrence: Worldwide from the Hauterivian to Campanian.

Stelidioseris major (Morycowa, 1971)
(Figs 6a-b)

Material: 140301; 1 thin section.

Synonymy:
v* 1971 Actinacuesta pseudominima major n. subsp.; Morycowa, p. 37, Text-fig. 13, 14, Pl. 1, Fig. 3, Pl. 2, Fig. 1.
v 1994 Diplocoenia nicolaui n. sp.; Reig Oriol, p. 21, Pl. 1, Fig. 2, Pl. 3, Figs. 6, 7.
v 2013c Stelidioseris major (Morycowa, 1971); Löser, Figs. 2gh.

Dimensions: (140301). See table below:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>µ</th>
<th>s</th>
<th>cv</th>
<th>µ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccd</td>
<td>12</td>
<td>5.06-7.92</td>
<td>6.33</td>
<td>0.91</td>
<td>14.4</td>
<td>5.41-7.24</td>
</tr>
<tr>
<td>septa</td>
<td>8</td>
<td>20-30</td>
<td>24.1</td>
<td>3.18</td>
<td>13.1</td>
<td>21-27</td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, Furcata Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140310).

Other occurrences: Lower Valanginian to lower Cenomanian of the European Boreal (Czech Republic, Germany), Central (Greece) and Western Tethys (Spain), and Western Atlantic (Mexico).

Genus Dimorphastrea Orbigny, 1850

A description of the genus and illustrations of type material were provided in Löser (2016).

Material: 140311; 2 thin sections.

Synonymy:
v 2013 Dimorphastrea sp.; Löser, Vilas & Arias, p. 203, Figs. 4i-j.
Dimensions: (140311). See table below:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>µ</th>
<th>s</th>
<th>cv</th>
<th>µ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>crd</td>
<td>6</td>
<td>6.07-8.12</td>
<td>7.33</td>
<td>0.82</td>
<td>11.2</td>
<td>6.51-8.16</td>
</tr>
<tr>
<td>cdw</td>
<td>4</td>
<td>5.19-6.95</td>
<td>6.31</td>
<td>0.78</td>
<td>12.4</td>
<td>5.53-7.10</td>
</tr>
<tr>
<td>septa</td>
<td>10</td>
<td>30-49</td>
<td>38.90</td>
<td>6.26</td>
<td>16.0</td>
<td>33-45</td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, *Furcata* Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140311).

Other occurrences: Hauterivian to early Cenomanian of the European Boreal (France, Germany) and the Western Tethys (Spain).

Genus *Latohelia* Löser, 1987

Latohelia is a phaceloid coral with a small corallite diameter. It was recently (Löser, 2014, 2016) illustrated and described. Formerly, Lower Cretaceous corals of this type were assigned to the genus *Calamophylliopsis*. This genus differs greatly from *Latohelia* in having a much larger corallite diameter, compact septa that are fused in the centre of the corallite and very irregular pennulae (Löser, 2016, 219) and very probably does not occur in the Cretaceous.

Latohelia ruizi (Bataller, 1947) (Figs 3j-l)

Material: 140308, 7250; 5 thin sections.

Synonymy:

v* 1947 *Dendrosmilia Ruizi* Bataller 1943; Bataller, p. 45, Text-fig. without number

Dimensions: (7250). See table below:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>µ</th>
<th>s</th>
<th>cv</th>
<th>µ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>clmin</td>
<td>6</td>
<td>3.98-4.83</td>
<td>4.52</td>
<td>0.30</td>
<td>6.8</td>
<td>4.21-4.83</td>
</tr>
<tr>
<td>clmax</td>
<td>4</td>
<td>5.01-6.05</td>
<td>5.69</td>
<td>0.46</td>
<td>8.2</td>
<td>5.22-6.15</td>
</tr>
<tr>
<td>septa</td>
<td>5</td>
<td>38-52</td>
<td>42.20</td>
<td>5.63</td>
<td>13.3</td>
<td>37-48</td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, *Furcata* Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, between 10 and 1.5 m below the top of the formation.

Other Occurrence: Only known from the Middle Jurassic of Madagascar and the early Cenomanian of Cantabria (Spain).

Genus *Thalamocaeniopsis* Alloiteau, 1954

The genus was described and illustrated in Löser (2016). It is well defined but rarely recognised in the literature because its first description and illustration were poor. The genus shows a cerioid corallite arrangement and has polygonal corallites. The septa are perforated at the inner margin only, they bear pennulae and their symmetry is irregular. The genus is not rare; about 15 species reaching from the middle Jurassic to the Cenomanian are known.

Thalamocaeniopsis collignoni (Alloiteau, 1958) (Figs 4a-c)

Material: 140315, 140323; 3 thin sections.

Synonymy:

v* 1958 *Trigerastraea collignoni*; Alloiteau, p. 78, Pl. 7, Fig. 1, Pl. 14, Fig. 3, Text-fig.13.

Dimensions: (140223). See table below:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>µ</th>
<th>s</th>
<th>cv</th>
<th>µ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>clmin</td>
<td>10</td>
<td>3.79-6.54</td>
<td>5.11</td>
<td>0.98</td>
<td>19.2</td>
<td>4.13-6.10</td>
</tr>
<tr>
<td>clmax</td>
<td>10</td>
<td>7.42-10.6</td>
<td>8.92</td>
<td>1.03</td>
<td>11.6</td>
<td>7.88-9.96</td>
</tr>
<tr>
<td>ccd</td>
<td>18</td>
<td>4.16-8.60</td>
<td>6.57</td>
<td>1.34</td>
<td>20.4</td>
<td>5.23-7.92</td>
</tr>
<tr>
<td>septa</td>
<td>5</td>
<td>63-84</td>
<td>70.8</td>
<td>7.91</td>
<td>11.1</td>
<td>63-79</td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, *Furcata* Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140323).

Other occurrences: Only known from the Middle Jurassic of Madagascar and the early Cenomanian of Cantabria (Spain).

Thalamocaeniopsis taramellii (Achiardi, 1880) (Figs 4d-f)

Material: 140303, 140307; 2 thin sections.

Synonymy:

v* 1880 *Latimeandra taramellii*; Achiardi, p. 249, Pl. 17, Fig. 7.

Figure 3. a-c *Stelidioseris icaunensis* (Orbigny, 1850), SLD 140312. (a) Transversal thin section. (b) Transversal thin section, detail. (c) Longitudinal thin section. (d-f) *Astraeofungia diversisepta* (Hackemesser, 1936), SLD 140310. (d) Transversal thin section. (e) Transversal thin section, detail. (f) Longitudinal thin section. (g-i) *Dimorphastrea* sp., SLD 140311. (g) Transversal thin section. (h) Transversal thin section, detail. (i) Longitudinal thin section. (j-l) *Latohelia ruizi* (Bataller, 1947), ERNO. (j) Transversal thin section. (k) Transversal thin section, detail. (l) Longitudinal thin section. Scale bars = 1 mm.
v 2004 Isastrea minima Prever, 1909; Löser & Mohanti, p. 583, Fig. 2c.

v 2018 Thalamocaeniopsis sp.; Löser, Steuber & Löser, p. 44, Pl. 4, Figs. 10-11.

Dimensions: (140307). See table below:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>μ</th>
<th>s</th>
<th>cv</th>
<th>μ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>clmin</td>
<td>10</td>
<td>3.96-6.69</td>
<td>5.11</td>
<td>0.88</td>
<td>17.3</td>
<td>4.22-6.00</td>
</tr>
<tr>
<td>clmax</td>
<td>10</td>
<td>5.95-9.64</td>
<td>7.64</td>
<td>0.98</td>
<td>12.9</td>
<td>6.65-8.63</td>
</tr>
<tr>
<td>ccd</td>
<td>9</td>
<td>4.85-7.07</td>
<td>5.74</td>
<td>0.69</td>
<td>12.1</td>
<td>5.04-6.43</td>
</tr>
<tr>
<td>septa</td>
<td>3</td>
<td>44-46</td>
<td>45.0</td>
<td>1.0</td>
<td>2.2</td>
<td>44-46</td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, Furcata Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140303, 140307).

Other occurrences: Bathonian to Cenomanian of Eastern (India), Central (Germany, Greece, Italy), and Western Tethys (Spain).

Superfamily Eugyroidea Achiardi, 1875

Family Eugydidae Achiardi, 1875

Genus Diplogyra Eguchi, 1936

Diplogyra was described and illustrated in Löser (2016).

Diplogyra arasensis (Alloiteau, 1946) (Figs 4g-i)

Material: 140332; 2 thin sections.

Synonymy:

v * 1946 Eugyra arasensis n. sp.; Alloiteau, p. 197, Pl. 9, Fig. 4, Text-fig. 2.

v 2013b Diplogyra arasensis (Alloiteau, 1946-47); Löser, p. 11, Figs. 4g-i [here detailed synonymy].

v 2016 Diplogyra arasensis (Alloiteau, 1946); Löser & Zell, p. 9, Figs. 4.1-3.

Dimensions: (140332). See table below:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>μ</th>
<th>s</th>
<th>cv</th>
<th>μ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>crw</td>
<td>10</td>
<td>0.76-1.08</td>
<td>0.90</td>
<td>0.09</td>
<td>10.2</td>
<td>0.80-0.99</td>
</tr>
<tr>
<td>crd</td>
<td>40</td>
<td>0.91-1.44</td>
<td>1.18</td>
<td>0.14</td>
<td>12.1</td>
<td>1.04-1.33</td>
</tr>
<tr>
<td>sd/5mm</td>
<td>5</td>
<td>13-16</td>
<td>14.4</td>
<td>1.14</td>
<td>7.9</td>
<td>13.3-15.5</td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, Furcata Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140325).

Other occurrences: Hauterivian of the European Boreal (France), Aptian and Albian of the Eastern Tethys (Iran), Central Tethys (Greece), Western Tethys (Spain), and Western Atlantic (Mexico).

Genus Eugyra Fromentel, 1857

The genus was described and illustrated with the type and topotypical material in Löser (2016).

Eugyra sugiyamai Eguchi, 1951 (Fig. 4j)

Material: 140325; 2 thin sections.

Synonymy:

v 1926 Eugyra digitata Koby; Dietrich, p. 66, Pl. 9, Fig. 4.

v* 1951 Eugyra sugiyamai Eguchi, n. sp.; Eguchi, p. 54, Pl. 19, Figs. 1-6.

v 1964 Eugyra pusilla rariseptata n. subsp.; Morycowa, p. 45, Pl. 9, Fig. 1, Pl. 10, Fig. 1.

v 1964 Myriophyllia lanckoronensis n.sp.; Morycowa, p. 50, Text-fig. 6, Pl. 9, Fig. 3, Pl. 10, Figs. 2, 3.

Dimensions: (140325). See table below:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>μ</th>
<th>s</th>
<th>cv</th>
<th>μ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>crw</td>
<td>40</td>
<td>0.76-1.08</td>
<td>0.90</td>
<td>0.09</td>
<td>10.2</td>
<td>0.80-0.99</td>
</tr>
<tr>
<td>crd</td>
<td>40</td>
<td>0.91-1.44</td>
<td>1.18</td>
<td>0.14</td>
<td>12.1</td>
<td>1.04-1.33</td>
</tr>
<tr>
<td>sd/5mm</td>
<td>5</td>
<td>13-16</td>
<td>14.4</td>
<td>1.14</td>
<td>7.9</td>
<td>13.3-15.5</td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, Furcata Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140325).

Other occurrences: Worldwide from the Hauterivian to Lower Albian.

Family Solenocoeniidae Roniewicz, 2008

Genus Cryptocoenia Orbigny, 1849

Figure 4. a-c) Thalamocaeniopsis collignoni (Alloiteau, 1958), SLD 140323. (a) Transversal thin section. (b) Transversal thin section, detail. (c) Longitudinal thin section. d-f) Thalamocaeniopsis taramellii (Achiardi, 1880), SLD 140307. (d) Transversal thin section. (e) Transversal thin section, detail. (f) Longitudinal thin section. g-i) Diplogyra arasensis Alloiteau, 1946, SLD 140332. (g) Transversal thin section. (h) Transversal thin section, detail. (i) Longitudinal thin section. j) Eugyra sugiyamai Eguchi, 1951, SLD 140325. Transversal thin section. Scale bars = 1 mm.
This very common genus was described and illustrated in Löser (2016).

Cryptocoenia annae (Volz, 1903)
(Figs 5a-c)

Material: 140306; 3 thin sections.

Synonymy:
1903 *Cyathophora Annae*; Volz, p. 26, Pl. 4, Figs. 9-13.
v 2016 *Cryptocoenia annae* (Volz, 1903); Löser & Zell, p. 14, Figs. 5.4-6 [here detailed synonymy].

Dimensions: (140327). See table below:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>µ</th>
<th>s</th>
<th>cv</th>
<th>µ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>clmin</td>
<td>20</td>
<td>2.12-2.82</td>
<td>2.46</td>
<td>0.16</td>
<td>6.7</td>
<td>2.30-2.63</td>
</tr>
<tr>
<td>clmax</td>
<td>20</td>
<td>2.49-3.35</td>
<td>2.89</td>
<td>0.21</td>
<td>7.2</td>
<td>2.68-3.10</td>
</tr>
<tr>
<td>septa</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, *Furcata* Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140306).

Other occurrences: Hauterivian to early Cenomanian of the European Boreal (France), the Eastern (Iran), Central (Romania, Serbia), and Western Tethys (Spain), and the Western Atlantic (Mexico).

Cryptocoenia incerta Achiardi, 1880
(Figs 5d-f)

Material: 140223; 1 thin section.

Synonymy:
v* 1880 *Cryptocoenia ? incerta*; Achiardi, p. 298, Pl. 20, Fig. 4.
v 1891 *Cyathophora atempa*; Felix, p. 155, Pl. 25, Figs. 7, 8.
v 1932 *Cyathophora hayensis* Wells, n. sp.; Wells, p. 237, Pl. 30, Fig. 4, Pl. 32, Fig. 5.
v 1944 *Cyathophora hedbergi* Wells, n. sp.; Wells, p. 434, Pl. 69, Figs. 7, 8.

Dimensions: (140223). See table below:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>µ</th>
<th>s</th>
<th>cv</th>
<th>µ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>clmin</td>
<td>8</td>
<td>1.76-2.30</td>
<td>2.05</td>
<td>0.19</td>
<td>9.7</td>
<td>1.85-2.25</td>
</tr>
<tr>
<td>clmax</td>
<td>8</td>
<td>2.04-3.09</td>
<td>2.52</td>
<td>0.32</td>
<td>12.7</td>
<td>2.20-2.84</td>
</tr>
<tr>
<td>ccd</td>
<td>9</td>
<td>2.52-3.13</td>
<td>2.75</td>
<td>0.22</td>
<td>8.2</td>
<td>2.53-2.98</td>
</tr>
<tr>
<td>septa</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, *Furcata* Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, base (140223).

Other occurrences: Worldwide from the Upper Jurassic to the middle Cenomanian.

Cryptocoenia sp. 1
(Figs 5g-i)

Material: 140217; 1 thin section.

Synonymy:
v 2018 *Cryptocoenia sp.*; Löser, Steuber & Löser, p. 50, Pl. 7, Figs. 10-12.

Dimensions: (140217). See table bellow:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>µ</th>
<th>s</th>
<th>cv</th>
<th>µ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>clmin</td>
<td>15</td>
<td>1.38-1.87</td>
<td>1.55</td>
<td>0.14</td>
<td>9.3</td>
<td>1.41-1.70</td>
</tr>
<tr>
<td>clmax</td>
<td>15</td>
<td>1.59-2.18</td>
<td>1.88</td>
<td>0.19</td>
<td>10.4</td>
<td>1.68-2.07</td>
</tr>
<tr>
<td>ccd</td>
<td>20</td>
<td>1.60-3.05</td>
<td>2.32</td>
<td>0.37</td>
<td>15.9</td>
<td>1.95-2.69</td>
</tr>
<tr>
<td>septa</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, *Furcata* Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, base (140217).

Other occurrences: Aptian to early Cenomanian of the Tethys (Greece, Spain).

Cryptocoenia sp. 2
(Figs 6c-d)

Material: 140203, 140204, 140224; 4 thin sections.

Dimensions: (140203). See table below:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>µ</th>
<th>s</th>
<th>cv</th>
<th>µ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>clmin</td>
<td>9</td>
<td>1.00-1.24</td>
<td>1.11</td>
<td>0.06</td>
<td>5.9</td>
<td>1.05-1.18</td>
</tr>
<tr>
<td>clmax</td>
<td>9</td>
<td>1.23-1.45</td>
<td>1.31</td>
<td>0.07</td>
<td>5.8</td>
<td>1.24-1.39</td>
</tr>
<tr>
<td>(140204). See table below:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>min-max</td>
<td>µ</td>
<td>s</td>
<td>cv</td>
<td>µ±s</td>
</tr>
<tr>
<td>clmin</td>
<td>15</td>
<td>1.21-1.68</td>
<td>1.37</td>
<td>0.14</td>
<td>10.3</td>
<td>1.23-1.51</td>
</tr>
<tr>
<td>clmax</td>
<td>7</td>
<td>1.38-1.59</td>
<td>1.46</td>
<td>0.06</td>
<td>4.5</td>
<td>1.39-1.52</td>
</tr>
<tr>
<td>(140424). See table below:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>min-max</td>
<td>µ</td>
<td>s</td>
<td>cv</td>
<td>µ±s</td>
</tr>
<tr>
<td>clmin</td>
<td>17</td>
<td>1.39-2.34</td>
<td>2.08</td>
<td>0.23</td>
<td>11.0</td>
<td>1.85-2.31</td>
</tr>
<tr>
<td>clmax</td>
<td>7</td>
<td>2.41-2.99</td>
<td>2.57</td>
<td>0.19</td>
<td>7.7</td>
<td>2.37-2.77</td>
</tr>
</tbody>
</table>

Remarks: Under this species, material is collected that belongs to *Cryptocoenia* or a related genus, but without any septa. Their absence can be also due to poor conservation. The three samples possess differing corallite dimensions.
Figure 5. a-c) Cryptocoenia annae Volz, 1903, SLD 140327. (a) Transversal thin section. (b) Transversal thin section, detail. (c) Longitudinal thin section. d-f) Cryptocoenia incerta Achiardi, 1880, SLD 140223. (d) Transversal thin section. (e) Transversal thin section, detail. (f) Longitudinal thin section. g-i) Cryptocoenia sp., SLD 140217. (g) Transversal thin section. (h) Transversal thin section, detail. (i) Longitudinal thin section. j-l) Holocystis nomikosi Löser, 2006, SLD 140225. (j) Transversal thin section. (k) Transversal thin section, detail. (l) Longitudinal thin section. Scale bars = 1 mm.
Occurrence: Early Aptian, *Furcata* Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, base (140203).

Genus *Holocystis* Lonsdale, 1849

The genus was revised in Löser (2006).

Holocystis bukowinensis Volz, 1903 (Figs 6e-f)

Material: 140341; 1 thin section.

Synonymy:
* 1903 *Holocystis bukowinensis*; Volz, p. 27 [19], Pl. 4, Fig. 14-17.
* v 1995 *Holocystis calzadai* n. sp.; Reig Oriol, p. 8, Pl. 1, Fig. 1.

Dimensions: (140341). See table below:

<table>
<thead>
<tr>
<th>n</th>
<th>min-max</th>
<th>µ</th>
<th>s</th>
<th>cv</th>
<th>µ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>clmin</td>
<td>15</td>
<td>1.20-1.70</td>
<td>1.44</td>
<td>0.14</td>
<td>9.1</td>
</tr>
<tr>
<td>clmax</td>
<td>15</td>
<td>1.30-1.76</td>
<td>1.56</td>
<td>0.14</td>
<td>9.1</td>
</tr>
<tr>
<td>septa</td>
<td>4+4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, *Furcata* Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140341).

Other occurrences: Aptian to early Albian of the Western Atlantic (Mexico) and the Tethys (Greece, Spain, Tanzania).

Superfamily *Haplaroeoidea* Vaughan & Wells, 1943
Family *Haplaroeidae* Vaughan & Wells, 1943
Genus *Actinarea* Orbigny, 1849

A description and illustration of topotypical material was given in Löser (2016).

Actinarea sp. 1 (Figs 6g-i)

Material: 140331; 2 thin sections.

Synonymy:
* v 1998 *Actinarea* sp.; Schöllhorn, p. 93, Pl. 25, Figs. 7, 8.
* v 2013b *Actinarea* cf. *robusta* Roniewicz, 1966; Löser, p. 30, Figs. 10g-i.

Dimensions: (140331). See table below:

<table>
<thead>
<tr>
<th>n</th>
<th>min-max</th>
<th>µ</th>
<th>s</th>
<th>cv</th>
<th>µ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccd</td>
<td>16</td>
<td>4.60-7.35</td>
<td>5.74</td>
<td>0.80</td>
<td>14.0</td>
</tr>
<tr>
<td>septa</td>
<td>6</td>
<td>29-37</td>
<td>32.7</td>
<td>2.58</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, *Furcata* Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140331).

Other occurrences: Aptian to early Albian of the Western Tethys (France, Spain).

Actinarea sp. 2 (Figs 6j-l)

Material: 140316, 140326; 4 thin sections.

Dimensions: (140326). See table below:

<table>
<thead>
<tr>
<th>n</th>
<th>min-max</th>
<th>µ</th>
<th>s</th>
<th>cv</th>
<th>µ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccd</td>
<td>15</td>
<td>5.60-9.25</td>
<td>7.47</td>
<td>1.22</td>
<td>16.3</td>
</tr>
<tr>
<td>septa</td>
<td>10</td>
<td>30-42</td>
<td>33.7</td>
<td>3.43</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Remarks: The material shows slightly larger corallite dimensions compared to the holotype of the species. As in the type, only 8 to 11 septa are developed, but up to 16 are visible, partly only as costae.
Figure 6. a-b) Stelidioseris major Morycowa, 1971, SLD 140301. (a) Transversal thin section. (b) Transversal thin section, detail. c-d) Cryptocoenia sp., SLD 140203. (c) Transversal thin section. (d) Transversal thin section, detail. e-f) Holocystis bukowinensis Volz, 1903, SLD 140341. (e) Transversal thin section. (f) Transversal thin section, detail. g-i) Actinaraea sp., SLD 140331. (g) Transversal thin section. (h) Transversal thin section, detail. (i) Longitudinal thin section. j-l) Actinaraea sp., SLD 140326. (j) Transversal thin section. (k) Transversal thin section, detail. (l) Longitudinal thin section. Scale bars = 1 mm.
Occurrence: Early Aptian, *Furcata* Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140316).

Other occurrences: Only known from the early Albian of the Western Atlantic (Mexico).

Actinaraea sp. 3
(Figs 7a-d)

Material: 140318; 2 thin sections.

Dimensions: (140318). See table below:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>μ</th>
<th>s</th>
<th>cv</th>
<th>μ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccd</td>
<td>12</td>
<td>5.42-7.31</td>
<td>6.55</td>
<td>0.73</td>
<td>11.1</td>
<td>5.82-7.28</td>
</tr>
<tr>
<td>septa</td>
<td>8</td>
<td>38-51</td>
<td>44.3</td>
<td>5.59</td>
<td>12.6</td>
<td>39-50</td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, *Furcata* Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140318).

Other occurrences: Aptian of the Western Atlantic (Mexico).

Genus *Camptodocis* Dietrich, 1926

The genus was systematically revised in Löser (2008).

Camptodocis sp.
(Figs 7e-f)

Material: 140330; 1 thin section.

Dimensions: (140330). See table below:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>μ</th>
<th>s</th>
<th>cv</th>
<th>μ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>crd</td>
<td>14</td>
<td>4.79-7.25</td>
<td>5.95</td>
<td>0.68</td>
<td>11.5</td>
<td>5.26-6.64</td>
</tr>
<tr>
<td>septa</td>
<td>4</td>
<td>52-66</td>
<td>58.25</td>
<td>5.79</td>
<td>9.9</td>
<td>52.45-64.04</td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, *Furcata* Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140330).

Other occurrences: Aptian of the Western Atlantic (Mexico).

Superfamily *Misistelloidea* Eliášová, 1976

Plesiosmilia Group

The genus *Plesiosmilia* was long-time assigned to the Axosmiliidae family. It cannot remain in this family because *Axosmilia* is poorly defined. The so-called lectotype of its type species (*Caryophyllia extinctorum* Michelin, 1841; MNHN M00053, figured specimen, figured again in Löser, 2016) is an unsectioned, poorly preserved solitary coral. The type status of the so-called paralectotypes (MNHN M00050) is uncertain. The type of the type species of *Plesiosmilia* (*Plesiosmilia turbinata* Milaschewitsch, 1876; MB K3500) is well preserved but because it is silicified, remains without a trace of microstructures. In a certain way comparable material from the Cretaceous shows septa made of small trabeculae resulting in a median dark line, with occasionally horizontally branching trabeculae form pronounced granules at the surface of the septa that are not aligned. The *Plesiosmilia* group is further characterised by a regular septal symmetry, compact thick septa, the absence of a wall (but presence of an epitheca), a well-developed endotheca and occasionally columella. The group collects solitary and phaceloid coral genera. The informal group needs a formal name that is based on material with well-preserved fine skeletal structures.

Genus *Plesiosmilia* Milaschewitsch, 1876.

The genus was described and illustrated in Löser (2016).

Plesiosmilia fromenteli (Angelis d'Ossat, 1905)
(Figs 7g-h)

Material: 140335; 2 thin sections.

Synonymy:

v 1905 *Peplosmilia Fromenteli*; Angelis d’Ossat, p. 242, Pl. 17, Fig. 6 a-g.

v 2013a *Plesiosmilia hennigi* Dietrich, 1926; Löser, p. 104, Fig. 5.10 [here detailed synonymy as *P. hennigi*].

v 2019 *Plesiosmilia fromenteli* (Angelis d’Ossat, 1905); Löser, Heinrich & Schuster, p. 217, Figs. 340ab.

Dimensions: (140335). c = 19.8 x 20. 3 mm; septa = 48.

Occurrence: Early Aptian, *Furcata* Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140335).

Other occurrences: Berriasian to Coniacian, worldwide.

Superfamily *Thamnasterioidea* Reuss, 1864

Family *Thamnasteriidae* Reuss, 1864

Genus *Ahrdorffia* Trauth, 1911

Ahrdorffia cancillata (Koby, 1898)
(Figs 7j-l)
Figure 7. a-d) *Actinariaea* sp., SLD 140318. (a) Transversal thin section. (b) Transversal thin section, detail. (c) Longitudinal thin section. (d) Longitudinal thin section, detail. e-f) *Camptodocis* sp., SLD 140330. (e) Transversal thin section. (f) Transversal thin section, detail. g-h) *Plesiosmilia fromenteli* Angelis d’Ossat, 1905, ERNO L-140335. (g) Transversal thin section. (h) Transversal thin section, detail. i) Longitudinal thin section. j-l) *Ahrdorffia cancellata* Koby, 1898, SLD 140313. (j) Transversal thin section. (k) Transversal thin section, detail. (l) Longitudinal thin section. Scale bars = 1 mm.
Material: 140313; 1 thin section.

Synonymy:
v* 1898 *Thamnaraea cancellata*; Koby, p. 86, Pl. 20, Figs. 7-10.
v 2013a *Mesomorpha cancellata* Koby, 1898; Löser, p. 100, Figs. 4.8-4.9 [here detailed synonymy].

Dimensions: (140313). See table below:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>µ</th>
<th>s</th>
<th>cv</th>
<th>µ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccd</td>
<td>20</td>
<td>1.21-2.37</td>
<td>1.81</td>
<td>0.32</td>
<td>18.1</td>
<td>1.48-2.14</td>
</tr>
<tr>
<td>septa</td>
<td>5</td>
<td>20-21</td>
<td>20.8</td>
<td>0.44</td>
<td>2.1</td>
<td>20-21</td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, *Furcata* Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140313).

Other occurrences: Worldwide from the Upper Jurassic to the Coniacian.

Order HELIOPORACEA Bock, 1938
Family *Helioporidae* Moseley, 1876
Genus *Heliopora* Blainville, 1830

The genus includes *Polytremacis*. Both genera were revised in Hernández Morales & Löser (2018).

Heliopora somaliensis Gregory, 1900
Figs 8a-c

Material: 140337; 2 thin sections.

Synonymy:
v 1900 *Heliopora somaliensis*, n.sp.; Gregory, p. 298, Pl. 2, Figs. 8 a-c.
v 1932 *Eomontipora harrisoni*, sp.n.; Gregory, p. 93, Pl. 3, Figs. 1-3.
1932 *Polytremacis (?) hancockensis* Wells, n.sp.; Wells, p. 256, Pl. 35, Fig. 5.
v 1948 *Heliopora japonica* n.sp.; Eguchi, p. 363, Pl. 60, Figs. 1, 2, 5, 7.
v 2018 *Heliopora harrisoni* (Gregory, 1932); Hernández Morales & Löser, Figs. 3.1-3.3.

Dimensions: (140337). See table below:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>min-max</th>
<th>µ</th>
<th>s</th>
<th>cv</th>
<th>µ±s</th>
</tr>
</thead>
<tbody>
<tr>
<td>clmin</td>
<td>20</td>
<td>0.75-1.02</td>
<td>0.92</td>
<td>0.10</td>
<td>10.8</td>
<td>0.82-1.02</td>
</tr>
<tr>
<td>clmax</td>
<td>20</td>
<td>0.80-1.13</td>
<td>1.00</td>
<td>0.09</td>
<td>9.4</td>
<td>0.91-1.10</td>
</tr>
<tr>
<td>ced</td>
<td>20</td>
<td>1.72-3.20</td>
<td>2.47</td>
<td>0.43</td>
<td>17.4</td>
<td>2.04-2.91</td>
</tr>
<tr>
<td>septa</td>
<td>8</td>
<td>17-19</td>
<td>18.1</td>
<td>0.64</td>
<td>3.5</td>
<td>17-19</td>
</tr>
</tbody>
</table>

Occurrence: Early Aptian, *Furcata* Zone of Spain (País Vasco, Vizcaya) Bilbao, Peñascal, 1.5 m below top of the formation, in the cutting of the quarry (140337).

Other occurrences: Worldwide Barremian to Santonian.

5. DISCUSSION

The first horizon just on the base of the Peñascal Formation yielded only four species of the family Solenocoeniidae. One of the genera, *Cryptocoenia*, is a very common Middle Jurassic to Cenomanian coral genus and occurs almost everywhere. The other genus, *Holocystis*, is more rare. The second horizon yielded 19 species. Both horizons share only one species, *Holocystis nomikosi*.

Figure 8. a-c) *Heliopora somaliensis* Gregory, 1900, SLD 140337. (a) Transversal thin section. (b) Transversal thin section, detail. (c) Longitudinal thin section. Scale 1 mm.
Latohelia ruizi is not restricted to the second horizon but occurs in the whole upper part of the Peñascal Formation. The difference between horizons must be found in the ecological conditions that were better for corals towards the upper part of the formation.

The early Aptian was very rich in species and genera on a global scale. When only considering the 2550 Cretaceous localities from which corals are reported in the literature, with descriptions and illustrations, about 140 coral localities have a early Aptian age (5.5%), and, when including a slightly longer time period 375 localities with corals have a range from the late Barremian to the Aptian (15%). This is also reflected in the distribution of the species found in the Peñascal Formation (Fig. 9). Most were already known from the early Aptian.

Table 1. Frequency of the coral from the study area. Classification follows Löser (2016) for the time interval Hauterivian to Albian.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very abundant</td>
<td>Cryptocoenia, Dimorphastrea, Eugyra, Pleiosmilia, Stelidoseris</td>
</tr>
<tr>
<td>Abundant</td>
<td>Astraeofungia</td>
</tr>
<tr>
<td>Occasional</td>
<td>Ahrdorffia, Diplogyra, Heliopora, Holocystis</td>
</tr>
<tr>
<td>Rare</td>
<td>Actinaraea, Camptodocis, Latohelia, Thalamocaeniopsis</td>
</tr>
</tbody>
</table>

The palaeobiogeographical analysis does not show clear patterns due to the low number of species found in Peñascal (Fig. 10). Most correlations can be found into Hauterivian faunas of the Paris Basin, the Aptian and Albian of the Bisbee Basin (Northern Mexico) and east Iberia, the nearby northern Pyrenees and the Basque-Cantabrian Basin.

No co-occurring species were found with the areas Aragón and from Cataluña, except for those mentioned in the synonymy lists. No co-occurring species were found with the Peñacerrada diapir (Sachs, 2002).
ACKNOWLEDGEMENTS

This research was funded by project IT-930-16 of the Basque Government. The preparation of thin sections was partly done in the Estación Regional del Noroeste (Hermosillo, Mexico) by Aimée Orcí. Alejandro Samaniego assisted in collecting morphometric data on the corals. English language correction by Proof-Reading-Services assisted in collecting morphometric data on the corals. We are grateful to Ricardo Garberoglio (Buenos-Aires) and one anonymous reviewer for their insightful comments.

REFERENCES

Eguchi, M. 1951. Mesozoic hexacorals from Japan. Science Reports of the Tohoku Imperial University, (2: Geology), 24, 1-96.

Löser, H. & Zell, P. 2016. Late Aptian corals from the South Iberian Sub-Basin (Cretaceous; Eastern Spain). Revista de la Sociedad Geológica de España, 29, 3-20.

