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ABSTRACT

During the early to middle Miocene of the Atlantic and Indian Oceans there were variations in species diversity of the lower bathyal to
abyssal plain (3-4.4 km) benthic foraminiferal assemblages although, overall, diversity remained high and comparable with that of the
modern environment. The early Miocene was a period of palaeoceanographic change and this has previously been documented both
through studies of stable isotopes and the rate of appearances or disappearances of taxa (whether evolutionary or ecological). The diversity
oscillations appear to represent shorter period change. The lowest diversities are associated with the peak abundance of bolivinids. Other
variations cannot be correlated from one site to another and are thought to represent local environmental changes. During the early-middle
Miocene, the diversity of the Atlantic abyssal plain was lower than that of the Indian and Pacific Oceans possibly indicating significant
diversity differences between ocean basins. On the basis of limited data, it is possible to speculate that the species diversity of the Miocene
was perhaps higher than that of today.
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RESUMEN

Durante el Miocene inferior y medio, en los océanos Atlantico e Indico, hubo variaciones en la diversidad especifica de las asociaciones de
foraminiferos bentonicos batiales, parte inferior, y abisales (3-4,4 Km), aunque en conjunto la diversidad permanecio alta y comparable con
la actual. El Mioceno inferior fue un lapso de cambios paleoceanogrificos, previamente documentados tanto por estudios sobre isdtopos
estables como por los de los indices de aparicion y desaparicion de los taxones (ya sean evolutivos o ecoldgicos). Las oscilaciones de la
diversidad parecen representar cambios de periodo corto. Las diversidades mas bajas estin asociadas con los picos de abundancia de los
bolivinidos. Sin embargo, otras variaciones no pueden correlacionarse de un lugar a otro y deben representar variaciones ambientales
locales. Durante el Mioceno inferior y medio, la diversidad en la llanura abisal atlantica era menor que la de los Océanos Indico y Pacifico,
indicando probablemente diferencias significativas en la diversidad entre los mismos. Sobre esta base limitada, se puede especular que la
diversidad especifica miocena fue quizas mayor que la de hoy dia.

Palabras clave: Foraminiferos bentonicos, Mioceno, diversidad especifica, paleoceanografia.

INTRODUCTION

Over the last decade there has been an increasing aware-
ness of the importance of understanding the ecological and
evolutionary significance of biodiversity. The modern deep-
sea is proving to be a region of high species diversity for
many groups of organisms (Gage and Tyler, 1991). The bent-
hic foraminifera have the advantage that they posses a test
which is preserved in the fossil record. It is therefore possible
to document changes in species diversity through geological
time. This is important because modern diversity patterns are
not just the result of current environmental pressures on the
living fauna; they are also influenced by the historical deve-
lopment of the habitats.

Previous studies have established that the diversity of
deep-sea benthic foraminifera has varied throughout the Ceno-
zoic (Gupta and Srinivasan, 1992; Thomas, 1985, 1986, 199();
Woodruff, 1985; Nomura, 1991). In relation to ocean size and
differences of water depth, there are still very few data. In this
study we examine the species diversity trends of benthic
foraminifers at similar lower bathyal and abyssal water depths
at different latitudes in the Atlantic and Indian Oceans during
the early to middle Miocene. This was a period of faunal
turnover (extinctions and speciations) in the deep-sea (Tho-
mas, 1992; Miller, er al. 1992) and led to the development of
the essentially modern fauna in the middle Miocene (Berg-
gren, 1972). It is thus a period of particular interest in terms
of benthic foraminiferal diversity.

https://doi.org/10.7203/sjp.24247

METHODS

Early to middle Miocene deep-sea benthic foraminiferal
faunas have been studied from six sites in the Atlantic Ocean
and three sites in the Indian Ocean: DSDP Site 368 (17°30.04’N,
21921.02’W; present water depth 3366m), DSDP Site 400A
(47°22.90°N, 09°11.90'W; 4399m), DSDP Site 518 (29°58.42’S,
38°08’12'W; 3944m), DSDP Site 529 (28°55.83’S, 02°46.08’E;
305m), DSDP Site 563 (33°38.53’N, 43°46.04’W; 3786m), ODP
Site 667A (04°34.15’N, 21°54.68°'W: 3529m), ODP Site 709C
(03°54.09°S, 60°33.01’E; 3041m), ODP Site 710A (04°18.07°S,
60°58.08’E; 3824m) and ODP Site 758A (05°23.04’N, 90°21.60’E;
2924m) (Fig. 1). These sites were chosen for their generally
complete and continuous Miocene sections. Samples were
collected from each core section at intervals of approximately
1.5m equivalent to 0.1 to 0.3 m.y. apart.

For each of the 191 samples studied, more than 200
benthic foraminifers were picked from the >63 um size-fraction
to ensure that the large number of small-sized specimens
were included in the analysis (see comments by Schroder, et
al., 1987).

Species diversity was recorded in terms of the a index
and information function [H(S)]. The a index, first described
by Fisher er al. (1943), gives a measure of species richness.
Values were read off the base graph in Williams (1964, p. 311)
by plotting the number of species against the number of
individuals in a sample. This index is an objective method as
it takes the size of the assemblage into consideration although
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Figure 1. Location of the 9 sites in the Atlantic and Indian Oceans.
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it takes no account of each species abundance. The informa-
tion function [H(S)] takes into account both the number of
species and the distribution of individuals between species
but it ignores sample size. It is a measure of uncertainty and
therefore of heterogeneity. Values were calculated using the
Shannon-Weaver formulation based on information theory
(H) as follows:

ny
H(S)== )" pdnp;
i=1
where S is the number of species and p; the proportion of the
ith species (p = per cent divided by 100). The maximum
value of H [H(S) max.] for any given number of species is
attained when all S species have equal abundances, i.e.:

H(S) i = InS
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RESULTS

The early to middle Miocene deep-sea benthic foramini-
feral fauna is very diverse and many species occur at all nine
sites. Most of the taxa are rare, often are represented by very
few individuals per assemblage and some occur at a single
site only. The constant taxa throughout the interval include
Cibicidoides spp., Epistominella exigua (Brady), Gyroidinoides
spp., Globocassidulina subglobosa (Brady), Nuttallides umboni-
Sferus (Cushman), Oridorsalis umbonatus (Reuss), Pullenia spp.,
and unilocular forms. An interval of high abundances of
smooth-walled bolivinids occurs in the early Miocene of the
Atlantic Ocean (previously reported by Smart and Murray,
1994).
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Figure 2. Logs of diversity at the 5 Atlantic sites. Biostratigraphy and benthic stable isotope curves from Smart and Murray, 1994, The left isotope curve
(solid line) is the 8'%0 record and the right isotope curve (dashed line) is the 83C record. The location of Miocene 8150 events (Mi) of Miller, er
al. (1991) and Wright, et al. (1992), 510 events (0) and §'*C maxima (CM) of Woodruff and Savin (1991) are indicated. At Site 563, broken arrow
lines indicate positions of events recognised by Miller, ef al. (1991). At Site 667A, broken arrow lines indicate positions of events recognised by
Woodrufl" and Savin (1991) and Wright, ef al. (1992). Also shown is the CM line for each site estimated from Woodrull and Savin (1991). Wavy
lines indicate locations of hiatuses and are labelled N/ following Keller and Barron (1983). The open triangles represent the locations of
biostratigraphic datums (bottom and top) and the age (in Ma) and fossil type of each: N = nannofossil, F'= planktonic foraminifera. Ages are as in
Smart and Murray (1994). The uncertainty of the location of the biostratigraphic datums (which is a function of sampling interval) is indicated by
the length of the open triangles. The solid triangle indicates the approximate position of the Lower to Middle Miocene transition.
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Site Latitude Number of | Mean Range
Longitude | samples
studied
a index H(S) o index H(S)
400A 47°22°N 20 13 2.64 5-23 1.67-3.18
09°11'W
563 33°38°N 29 28 3.23 11-45 1.73-3.66
43°46'W
368 17°30°N 6 20 293 14-33 2,70-3.35
. 21221'W
6O67A 04°34'N 38 35 3.59 25-45 2.66-3.85
21°54'W
529 28°55'S 27 28 3.23 13-45 1.52-3.66
02°46'E
518 29°58’S 16 30 333 14-55 2.52-4.01
38°08°'W 3
INDIAN OCEAN
Site Latitude Number of | Mean Range
Longitude | samples
studied
o index H(S) o index H(S)
T58A 05°23’N 21 39 3.67 22-60 3.07-4.03
90°21I'E
709C 03°54’S 13 36 3.52 22-46 2.41-3.83
60°33’E
T10A 04°18'S 21 28 3.32 15-47 2.81-3.89
60°58'E
Table 1. Location of Sites in the Atlantic and Indian Oceans and sum-
mary of species diversity data.
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Atlantic Ocean

All the data are given in the Appendix Table and sum-
marised in Table 1. For five of the six Atlantic sites, the a
index and H(S) values are plotted versus sub-bottom depth
(mbsf) and benthic stable isotope stratigraphy from Smart and
Murray (1994) (Fig. 2). Site 368 was omitted from Fig. 2
because of the absence of an isotope stratigraphy. The bent-
hic foraminiferal faunas are highly diverse and generally bet-
ween 50 and 70 taxa are recognised in a sample of 200
individuals. Both the « index and H(S) show some fluctua-
tions through time but the values are always high and there is
no obvious latitudinal trend. However, maximum diversity is
seen at Site 667A close to the area of equatorial upwelling.
Postmortem dissolution is thought to be insignificant except
at Site 400A where it may be responsible for the observed
lower diversity. Site 400A has moderate CaCOj; values (<60 %
Montadert, Roberts, et al., 1979), P:B ratios are very low
(typically<1:1) and fragmentary and corroded planktonic
and benthic foraminifera are common.

At individual sites, the « index and H(S) all show very
similar patterns, although, in general, there is no apparent
correlation of peaks between different sites. The exception is
a period of lowered a (<15) and H(S) values (<2.0) during
the late early Miocene (NN4) at Sites 400A, 529, 563 and
667A. This equates with an interval of high abundances of
smooth-walled bolivinids (>60 %) (Smart and Murray, 1994).
Regardless of stratigraphic position, there appears to be no
correlation between diversity and the benthic 8'¥0 and §3C
values (Fig. 3).
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Figure 3. Scatter plots of stable isotopes and species diversity for Atlantic Ocean data.
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Although the two indices measure slightly different aspects
of diversity (alpha index = species richness, H(S) = heteroge-
neity), there is a good positive correlation between them (Fig.
4a). In addition, a clear exponential distribution can be seen.

Indian Ocean

The data are given in the Appendix Table and summari-
sed in Table 1. The benthic foraminiferal faunas are highly
diverse and generally between 60 and 80 taxa are recognised
in assemblages of 250 individuals. Like that of the Atlantic
Miocene, a« and H(S) fluctuate and there are no latitudinal
trends. Dissolution occurs at Site 710A which may account
for the lower diversity values. At Site 710A, CaCO, values are
moderate, fluctuating from 30 to 70 % (Backman, Duncan, et
al., 1988) and P:B ratios are generally low (~ 2:1).

In contrast to the Atlantic Ocean Miocene sites, a and
H(S) values are generally higher in the Indian Ocean sites and
the lowest values are not as low (Table 1). A peak in smooth-
walled bolivinids (~ 53 %) occurs at ~ 17 Ma at Site 709C
(Sample 709C-16H-7, 30-32 cm, 150.10 m sub-bottom) which
is coeval with the main bolivinid phase recognised in the
Atlantic Ocean (Thomas, 1986; Smart and Murray, 1994). No
stable isotope analyses have yet been undertaken on the
Indian Ocean samples discussed in this study.

DISCUSSION
Species diversity

The most up-to-date review of the theoretical background,
discussion of some of the problems revealed by actual data,
and a forward look to ways of establishing the controls on
species diversity is that of Schluter and Ricklefs (in Ricklefs
and Schluter, 1993). They conclude that at least seven proces-
ses influence species diversity (op. cit., p. 10 summarised):

1. Local ecological interactions within small areas of
uniform habitat are the population processes of classic diver-
sity theory. Both competition and predation tend to reduce
diversity through the elimination of taxa. Unless local com-
munities are saturated, local ecological interactions are neces-
sary, but not sufficient, to explain patterns of diversity.

2. The movement of individuals between patches of the
same kind of habitat underscores the importance of regional
(external) processes and the ephemeral nature of local popu-
lations, and hence the dynamic nature of the local community.

3. The dispersal of individuals between habitats reflects
the mosaic nature of the ecological landscape and the interde-
pendence of local and regional diversity due to migration
between habitats. Local diversity may reflect the variety and
size of habitat patches within the larger region.

4. The spread of taxa within regions according to their
habitat of origin and their subsequent ecological diversifica-
tion may be responsible in part for prevalent relationships
between habitat and diversity. Taxa originate and diversify
within certain habitat types and require evolutionary change
to expand into other habitats. Thus, the relationships between
diversity and habitat may depend upon the histories and sizes
of habitats as well as upon ecological conditions within parti-
cular habitat types. These considerations recognise that com-
munity development, including the extinction of taxa, has a
long evolutionary history constrained by ecological conserva-
tism of taxa within clades.

5. Allopatric production of species within regions depends
on the particular geographical configuration of habitats, which
of course differ in their influence according to the dispersal
abilities and other properties of taxa. Regions with different

spatial arrangements of habitats and barriers to dispersal, as
well as different climates, may vary markedly in rates of
species production and consequent regional diversity. Specia-
tion has not been studied systematically from ecological and
biogeographical perspectives.

6. ‘I'ne exchange of taxa between regions often depends
on unique events and geographical configurations, such as
those that occur when barriers between major land masses or
ocean basins break down or when habitats are displaced,
global climate changes and glaciation. Because biotic exchan-
ge may elevate diversity within regions of mixing, instances of
exchange may provide insights into the regulation of local
diversity.

7. Many types of unique events (glaciation, bolide impacts)
may lead to episodes of extinction that reduce diversity for
periods long enough to require cladogenesis and biotic exchan-
ge for its recovery.

At a local level it is possible to recognise processes that
allow numerous species to persistently coexist and others that
limit diversity. The persistence of species is not understood
because the theoretical models predict that “the number of
species that can coexist can be no greater than the number of
limiting resources” (Tilman and Pacal in Ricklefs and Schlu-
ter 1993) yet field data do not support this concept (there are
more species than limiting resources). Species diversity may
be limited by small population size and by fluctuations in
environmental conditions, both of which increase the likeli-
hood of local extinction of rare species. The heterogeneity of
a habitat is inversely related to the size of individuals (Morse,
et al. 1985) and this may account for the greater numbers of
small species. In the deep-sea, slight differences of sea floor
elevation, presence of different types of burrows and surface
trails made by macrofaunal organisms and their different muci-
laginous coatings, apart from variations in grain size may all
be significant at the scale of a 63-500 pm foraminiferan.

Rosenzweig and Abramsky (in Ricklefs and Schluter 1993)
note that the number of species in a region shows a hump-
shaped distribution pattern with respect to productivity; spe-
cies diversity increases as productivity decreases. The authors
are unable to satisfactorily account for this but they point out
that the favoured theory at present is that environmental
heterogeneity is increased by lower productivity.

On a regional scale, species diversity is higher than that
of local communities; there is production of new species, and
migration of species between habitats and between regions.
Ricklefs and Schluter (1993, p. 362) conclude: “Biologists
know so little about the generation and maintenance of diver-
sity that it is possible to entertain hypotheses as opposed as
local environmental determinism and age-and-area scenarios
based on centers of origin”™.

The fossil record “can reveal patterns of association and
change in community composition over time scales that are
beyond the reach of neontology, and to which modern pat-
terns cannot necessarily be extrapolated. Marine fossil data
can usefully be brought to bear on some of the questions that
are of interest in community ecology: for example, whether
communities normally utilize all available resources to sup-
port a maximum number of species, and whether invasions
create important effects among native populations” (Valentine
and Jablonski in Ricklefs and Schluter, 1993, p. 341). From an
examination of the Pleistocene record of the shallow water
marine environment of west North America, they concluded
that probably all the migrations of species into and out of
communities were driven by climatic changes associated with
glacial/interglacial cycles. The resultant associations often have
no present-day analogues and, like those, were ephemeral.
They suggest that communities contain unoccupied “adaptive
space” into which immigrants can fit without totally disrup-
ting the community and causing significant local extinction of
pre-existing taxa.



64 SMART AND MURRAY

The deep-sea

The bathyal and abyssal zones of modern oceans have
high species diversity (Gage and Tyler, 1991). Theories pre-
viously put forward to account for this include the stability-
time hypothesis of Sanders (1969) and the biological distur-
bance theory of Dayton and Hessler (1972). In the former,
physical stability of the environment was thought to promote
diversification, while in the latter biological disturbance such
as cropping was thought to be responsible. But, as the recent
review by Ricklefs and Schluter (1993) shows, the causes of
species diversity patterns in all environments remain largely
unresolved.

Recent research has shown that the deep-sea is subject to
more short-term change than had previously been realised.
For instance, benthic storms may rapidly disturb the sediment
surface (Kaminski, 1985). There is seasonal input of food in
the form of phytodetritus; this allows opportunistic species to
bloom and generally promotes much benthic activity (see
review by Gooday, 1994).

Living deep-sea foraminiferal faunas have high species
diversity. Murray (1991) summarised the data for bathyal and
abyssal environments from all the major oceans (including
assemblages > 63, > 125 and > 150 pm) and found the
ranges to be a 5-25 and H(S) 0.8-4.1. Individual species range
in size from < 20 pym to > 5 c¢cm. Many are soft-bodied with
agglutinated or proteinaceous walls which do not survive the
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Figare 4. (a) Plot of « and H(S) for Atlantic Ocean data. Fig. 4 (b) Plot ol
« and H(S) for Indian Ocean data.

processes of fossilisation (Gooday, 1994). Some taxa are epi-
faunal (living on the sediment surface or on organisms which
project above the substrate) but the majority are either sha-
llow infaunal (0-1 cm) or deep infaunal (> 1 ¢m) in the sense
of Buzas, et al. (1993).

At depths of 4483-4539 m in the north Atlantic Porcupine
Seabight, Gooday (1988) found that the H(S) of the superfi-
cial sediment assemblages was 2.83-3.62. The seasonal input
of phytodetritus is an environmental disturbance to which
certain opportunistic foraminifera (Epistominella exigua and
“Eponides” weddellensis Earland) respond very rapidly and
these assemblages had low diversity (H(S) 1.50-1.69). This is a
good example of high productivity being associated with low
species diversity.

According to Loubere, er al. (1993) the assemblage pre-
served in the fossil record “...depends on the vertical standing
stock distribution of foraminiferal populations, the production
rates of these populations, the rate of taphonomic processes
and their vertical distribution in the sediments, and the mode
and depth of bioturbation™. The loss of tests through tapho-
nomic processes includes dissolution of calcareous tests (which
is usually obvious through breakage and loss of small indivi-
duals) and destruction of fragile agglutinated taxa. The latter
invariably occurs so such forms are not normally seen in the
fossil record.

From previous studies, possible explanations put forward
to account for variations in species diversity throughout the
Cenozoic include changes in the nature of the deep-sea envi-
ronment caused by tectonics (gateways) (Woodruff, 1985) and/or
climatically induced changes in ocean circulation, particularly
in the nature of bottom water masses, (corrosiveness, i.e.,
dissolution effects; see Gupta and Srinivasan, 1992; Thomas,
1985, 1990), and intensity of surface water productivity. Gib-
son and Buzas (1973) have argued that each environment has
its carrying capacity for species diversity and this is reached
rather quickly on a geological timescale. Valentine and Jablon-
ski (in Rickelfs and Schluter 1993) suggest that communities
contain unoccupied adaptive space into which immigrants slot
without disrupting the host community. Thus, communities
are flexible and constantly changing without causing much
local extinction.

Most of the species of modern and Neogene deep-sea
assemblages are geologically long-ranging. Temporal changes
in species diversity are not likely to be a measure of evolutio-
nary appearances or extinctions but more an index of the
Lazarus Effect, i.e, the short-term disappearance and reappea-
rance of long-ranging taxa (see Flessa and Jablonski, 1983).
This is comparable with species migration between habitat
patches within larger regions.

The good correlation between the a and H(S) indices
(Fig. 4) indicates that either is a satisfactory measure of spe-
cies diversity. However, Alve and Murray (1994) have shown
that « is the better discriminator of different modern environ-
ments. When the two diversity indices are plotted together
(Fig. 5) it can be seen that an exponential relationship exists.
This is because although @« can increase to infinity, H(S)
increases very slowly above about 100 species. Buzas et al.
(1982) used the a index to determine that the number of
species occurring at one, two, n localities conforms to a log
series. Most species occur only once, a smaller number, twi-
ce, etc.; few species occur at many localities. On the modern
Atlantic margin of North America ~ 25% of the 878 species
occur at only one locality (Buzas and Culver, 1991). The same
situation applies to samples (“localities™) from a stratigraphic
succession. Thomas (1992, Fig. 1) showed that in a Palacoce-
ne sample 36 species occurred once, 14 species twice, etc. to
1 with 79 individuals. She argued that to assess species rich-
ness, large assemblages should be studied and even then the
stratigraphic ranges of rare species cannot be precisely
determined.
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Comparisons of diversity values between studies is depen-
dent on the use of the same size fraction. Published data
include the following size fractions: > 63, 74, 125, 149 pm.
Small taxa are progressively “lost” as the size fraction is
increased (Schroder, er al., 1987). In addition, there may be
different degrees of taxonomic splitting from one worker to
another. It follows that the most reliable comparisons are on
the same size fraction studied by the same author(s) as in this
study.

The late Oligocene-early Miocene was a period of transi-
tional faunas and the early to middle Miocene was a period of
faunal turnover (Thomas, 1992; Miller, et al., 1992). The
change preceeded the oxygen isotopic increase. Thomas (1992)
reviewed the stable isotope evidence for climatic change during
this period and concluded that there was some correlation
between faunal change and changes in surface water producti-
vity. Thomas (1986) also plotted the number of faunal events
(first and last events, whether evolutionary or migratory) at
various deep-sea localities. At North Atlantic Sites 608 and
610 there were few events from the early Miocene to early
middle Miocene (24-14.5 Ma) but somewhat more up to 11
Ma suggesting a faster rate of change. At Pacific Sites 573 and
574 the highest rate was between 18 and 13 Ma, so the faunal
change started earlier there. In the Indian Ocean, a similar
faunal change at 17.1 Ma was noted by Nomura (1991).

Whereas the faunal events discussed above signal long-
term changes in the ocean environment, the variations in the
a and H(S) curves presumably record changes of much shor-
ter duration. Although there is no overall pattern of correla-
tion of peaks from one site to another, the lowest values
coincide with the peak abundances of smooth-walled bolivi-
nids during the 20-17 Ma interval (see Smart and Murray,
1994). This was interpreted as representing a period of low
oxygen conditions associated with sluggish circulation of the
ocean bottom waters in the Atlantic Ocean. Other oscillations
in species diversity may be due to localised rather than regio-
nal causes. In modern environments, localised habitats within
the same region show variation in species diversity (Ricklefs
and Schluter, 1993). It is perhaps for these reasons that peaks
do not generally correlate from one site to another.

The species diversity values recorded here for the early-
middle Miocene are comparable with those of assemblages in
modern bathyal to abyssal environments. The Atlantic H(S)
values are somewhat lower than those from the Indian Ocean.
This is supported by Nomura (1991) who examined the >
149 um size fraction from Indian Ocean Sites 754 and 756 (H’
3.1-5.0 and 3.7-5.0 respectively). The H(S) values are also

350

300 -
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Figure 5. Plot of the two diversity indices, ¢ and H(S)max.
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higher in the Pacific Ocean (Boltovskoy and Watanabe, 1994;
H(S) 3.7-4.8) compared with the Atlantic Ocean. This may
indicate significant differences in deep-sea diversity between
ocean basins or it could be an artefact resulting from the
small data sets. Also, the range of « in the early-middle
Miocene Atlantic and of H(S) in the Indian and Pacific Oceans
is greater than that of modern oceans in general. It would be
unwise to draw firm conclusions on these limited results but
it is possible that in the past the species diversity of the
oceans was greater than that of the modern ones. There is
clearly a need to gather more comprehensive data on the
modern oceans and the fossil record.

CONCLUSIONS

The early to middle Miocene was a period of oceanic
change. The species diversity of the benthic foraminiferal
assemblages of the Aflantic and Indian Oceans at this time
generally remained high (a« 10-60, H(S) 2.0-4.0). Variability in
species diversity may be a response to temporal variations in
the carrying capacity of the abyssal environment or it may
reflect localised environmental changes. There are limited
data on the species diversity of modern oceans and much is
based on size fractions greater than 63 pm (125 or 150 pm).
Diversity values for modern bathyal and abyssal assemblages
are a 5-25 and H(S) 0.8-4.1. The « values for the Atlantic
and Indian Ocean Miocene range considerably higher (max. «
60). The Atlantic early-middle Miocene H(S) values are com-
parable with the modern ones but lower than those of the
Indian and Pacific Oceans. It would be unwise to draw firm
conclusions on these limited results but it is possible that in
the past the species diversity of the oceans was greater than
that of the modern ones.
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