La teoría atómico-molecular en el aprendizaje de la química en el ciclo 12-14

J. López Calafí, A. Salvador Carreño y M. de la Guardia Cirugeda
I.F.P. Silla (Valencia)
Dpto. Química Analítica.. Universidad de Valencia

El presente trabajo se integra en el proyecto de abordar la enseñanza de la Química en el Ciclo Superior de la E.G.B., tomando como punto de partida el reconocimiento de los materiales. (Salvador, 1987), (López, 1988), (López, 1989).

Se ha estudiado el tratamiento del tema de la Estructura Atómico-Molecular en textos de 8 de E.G.B., analizando distintos aspectos de su didáctica.

Los textos analizados son los que se indican en la Tabla I, que corresponden a 8 series recientes de editoriales españolas: Espora y Ciencia Actual de ANAYA, Naturalia de BARCANOVA, Oceanides de BRUNO, Naturaleza de EVEREST, Robinia de ONDA, Planeta de VICENS VIVES y Observatorio de SM.

Se ha analizado el número de páginas que cada libro estudiado dedica al tema (Tabla II). Si se considera el porcentaje total dedicado al conjunto de la Química en cada texto, la media es del orden del 24 %, lo que parece poco, considerando que se trata de 8 curso, en donde se encuentra el grueso de la Química en la E.G.B.

Dentro de la Química, se dedica una media del 33% al tema de Estructura Atómico-Molecular, lo que supone un 8,5% respecto del total.

Se han determinado los conceptos que aparecen definidos en los textos en los capítulos dedicados al tema de Estructura Atómico-Molecular, resultando un total de 64, de los cuales 37 se incluyen al menos en dos textos.

Estos conceptos se han clasificado en función del número de libros en los que aparecen, estudiándose estos datos mediante la distribución de Bradford. (Price, 1963), (Brad-Ford, 1948), (López, 1983).

Se representa en ordenadas el número acumulado de libros y en abscisas el logaritmo del número acumulado de conceptos. (Figura 1). Del estudio de esta distribución se deduce que el núcleo de conceptos más citados en los textos en el tema de la Teoría Atómico-Molecular son 10.
Tabla I
Textos de 8º de E.G.B. que se han analizado en el presente trabajo

<table>
<thead>
<tr>
<th>LIBRO</th>
<th>EDITORIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ESPORA</td>
<td>ANAYA</td>
</tr>
<tr>
<td>2. NATURALIA</td>
<td>BARCANOVA</td>
</tr>
<tr>
<td>3. ROBINIA</td>
<td>ONDA</td>
</tr>
<tr>
<td>4. OCEANIDES</td>
<td>BRUÑO</td>
</tr>
<tr>
<td>5. PLANETA-8</td>
<td>VICENS-VIVES</td>
</tr>
<tr>
<td>6. CIENCIA ACTUAL</td>
<td>ANAYA</td>
</tr>
<tr>
<td>7. NATURALEZA</td>
<td>EVERETS</td>
</tr>
<tr>
<td>8. OBSERVATORIO</td>
<td>SM</td>
</tr>
</tbody>
</table>

Tabla II
Número de paginas que cada libro estudiado dedica al tema

<table>
<thead>
<tr>
<th>Nº LIBRO</th>
<th>Nº TOT</th>
<th>Nº PAG</th>
<th>% QUIM</th>
<th>Nº TOT</th>
<th>% TEMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>247</td>
<td>84</td>
<td>340</td>
<td>34</td>
<td>13,7</td>
</tr>
<tr>
<td>2</td>
<td>245</td>
<td>54</td>
<td>22,0</td>
<td>15</td>
<td>6,1</td>
</tr>
<tr>
<td>3</td>
<td>305</td>
<td>30</td>
<td>9,8</td>
<td>3</td>
<td>1,0</td>
</tr>
<tr>
<td>4</td>
<td>320</td>
<td>103</td>
<td>32,2</td>
<td>41</td>
<td>12,8</td>
</tr>
<tr>
<td>5</td>
<td>280</td>
<td>85</td>
<td>30,3</td>
<td>18</td>
<td>6,4</td>
</tr>
<tr>
<td>6</td>
<td>191</td>
<td>52</td>
<td>27,2</td>
<td>24</td>
<td>12,6</td>
</tr>
<tr>
<td>7</td>
<td>285</td>
<td>53</td>
<td>18,6</td>
<td>17</td>
<td>6,0</td>
</tr>
<tr>
<td>8</td>
<td>223</td>
<td>41</td>
<td>18,4</td>
<td>20</td>
<td>9,0</td>
</tr>
<tr>
<td>MEDIA</td>
<td>24,1</td>
<td>8,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 1
Representación de Bradford de los conceptos más citados en el tema
Los conceptos que constituyen el núcleo son realmente los más fundamentales, si bien sorprende que no esté incluido el concepto de íon, estando sin embargo incluido el de metal, que es menos propio de este tema.

Se ha realizado un estudio de los 280 ejemplos que se incluyen en el tratamiento de los diferentes conceptos, distinguiendo además si se repiten algunos de ellos en los textos.

La gráfica de Bradford (Figura 2), nos muestra un núcleo de 8 conceptos con mayor número de ejemplos.

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>TOT.</th>
<th>EJEM.</th>
<th>REP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>METALES</td>
<td>30</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>NO METALES</td>
<td>20</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>NOL</td>
<td>19</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SUS. SIMPLE</td>
<td>17</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ATOMICO</td>
<td>16</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>E.COVALENTE</td>
<td>11</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FORMULA</td>
<td>11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>N.MOLECULAR</td>
<td>11</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Figura 2
Representación de Bradford de los conceptos más ejemplificados

Algunos de estos conceptos más ejemplificados están con el núcleo más citado en textos: metales, átomo, enlace covalente.

Se observa que hay pocos ejemplos repetidos en los distintos textos: metales como Li, Na, Ca, Fe, Pb; enlaces covalentes como las moléculas de Hidrógeno, Oxígeno, Nitrógeno, etc. lo que es lógico, debido al gran número de ejemplos que brinda la naturaleza de estos conceptos.

El estudio de las ilustraciones también nos puede dar una idea de la...
importancia que los autores dan a cada concepto. Se han estudiado un total de 140 ilustraciones, de las cuales 40 son fotografías mientras que el resto eran dibujos.

La distribución de Bradford (Figura 3), muestra un núcleo de 6 conceptos con mayor número de ilustraciones. Conceptos como átomo, molécula, enlace iónico o covalente, estaban también en el núcleo de conceptos más citados. Como puede observarse hay pocas ilustraciones repetidas en libros diferentes, aunque si se observa una mayor reiteración en las ilustraciones referentes a los enlaces iónico o covalente.

También se han analizado las cuestiones propuestas en los libros teniendo en cuenta el concepto o conceptos a los que hacían referencia, en total se han analizado 281 cuestiones y cada una de ellas aludía aproximadamente a 2 conceptos distintos por término medio. Del total de cuestiones, 113 se resuelven simplemente por mera copia del texto, 135 son de aplicación directa de la teoría y 33 de ellas han de resolverse mediante cálculo matemático.

![Figura 3](attachment:image3.jpg)

Figura 3
Representación de Bradford de los conceptos más ilustrados
La gráfica de Bradford (Figura 4) da lugar a un núcleo de 12 conceptos entre los que se encuentran los más citados en los textos, excepto el concepto de metal.

Solamente hay dos conceptos: átomo y enlace covalente que aparecen en los cuatro núcleos de: definiciones, ejemplos, ilustraciones y cuestiones.

La estructura que se ha seguido en la mayor parte de los textos para tratar el tema se puede observar en los mapas de conceptos de la Figura 5. (Novack, 1988).

Hay que resaltar la total desconexión de unos capítulos con otros referentes al mismo tema, que hace que los mapas de conceptos sean cuatro en lugar de uno solo, y que el orden de explicación de conceptos (A, B, C, D) no sea el que nosotros podríamos (A, D, C, B), (ver Fig. 5), ya que debería tratarse primero lo más general para llegar a lo particular.
y además concatenando unos conceptos con otros, de tal forma que todo se integrase en un solo mapa conceptual más amplio, en donde se partiría de la clasificación de sustancias simples y compuestas (A), hasta llegar a la parte más intrínseca de los átomos (B).
Bibliografía

Salvador, A., López, J., Otalo, MD., De la Guardia, M. 1987. La Química en la EGB y el reconocimiento de la materia. 2 Congreso Internacional sobre Investigación en la Didáctica de las Ciencias y de las Matemáticas.