Circular chemistry: Adapting linear chemistry to mitigate the climate crisis

Bianca Stadelmann, Chris Slootweg

Abstract


In this article we explore the imperative shift from a linear economic model to a circular one, with a particular focus on the pivotal role of chemistry in this transition. It elucidates the critical global challenges stemming from unsustainable resource extraction and the linear «take-make-dispose» approach, including climate change, resource depletion, and biodiversity loss. Circular chemistry emerges as a promising solution, guided by principles of green chemistry and circular economy. It advocates for perpetual material cycles, emphasizing sustainable end-of-life strategies and product design that prioritizes reuse and recycling. We underscore the need for chemistry to prioritize efficiency, safety, and circularity, while also addressing challenges associated with complex waste streams and the responsible mineralization of chemicals. Achieving circular chemistry necessitates cooperation among individuals, educational and scientific institutions, industries, and regulatory bodies, and as such it can significantly contribute to mitigating global environmental crises by establishing sustainable material circulation as a cornerstone principle.

Keywords


circular chemistry; sustainability; environmental crises; planetary boundaries; circular economy



DOI: https://doi.org/10.7203/metode.15.27370

References


Bachmann, M., Zibunas, C., Hartmann, J., Tulus, V., Suh, S., Guillén-Gosálbez, G., & Bardow, A. (2023). Towards circular plastics within planetary boundaries. Nature Sustainability, 6(5), 599–610. https://doi.org/10.1038/s41893-022-01054-9

Earth Overshoot Day. (2023, 5 June). This year’s Earth Overshoot Day lands on August 2: The trend is flattening but still far from reversing [Press release]. https://www.overshootday.org/newsroom/press-release-june-2023-english/

Ellen MacArthur Foundation. (2019). Completing the picture: How the circular economy tackles climate change.

Flerlage, H., & Slootweg, J. C. (2023). Modern chemistry is rubbish. Nature Reviews Chemistry, 7, 593–594. https://doi.org/10.1038/s41570-023-00523-9

Galán-Martín, Á., Tulus, V., Díaz, I., Pozo, C., Pérez-Ramírez, J., & Guillén-Gosálbez, G. (2021). Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries. One Earth, 4(4), 565–583. https://doi.org/10.1016/j.oneear.2021.04.001

Keijer, T., Bakker, V., & Slootweg, J. C. (2019). Circular chemistry to enable a circular economy. Nature Chemistry, 11(3), 190−195. https://doi.org/10.1038/s41557-019-0226-9

Kümmerer, K., Clark, J. H., & Zuin, V. G. (2020). Rethinking chemistry for a circular economy. Science, 367(6476), 369–370. https://doi.org/10.1126/science.aba4979

Liu, Z., He, X., Fang, C., Camacho-Forero, L. E., Zhao, Y., Fu, Y., Feng, J., Kostecki, R., Balbuena, P. B., Zhang, J., Lei, J., & Liu, G. (2020). Reversible crosslinked polymer binder for recyclable lithium sulfur batteries with high performance. Advanced Functional Materials, 30(36), 2003605. https://doi.org/10.1002/adfm.202003605

Mahaffy, P. G., Matlin, S. A., Holme, T. A., & MacKellar, J. (2019). Systems thinking for education about the molecular basis of sustainability. Nature Sustainability, 2(5), 362–370. https://doi.org/10.1038/s41893-019-0285-3

Anastas, P. T., & Warner, J. C. (1998). Green chemistry: theory and practice. Oxford University Press.

Persson, L., Carney Almroth, B. M., Collins, C. D., Cornell, S., de Wit, C. A., Diamond, M. L., Fantke, P., Hassellöv, M., MacLeod, M., Ryberg, M. W., Søgaard Jørgensen, P., Villarrubia-Gómez, P., Wang, Z., & Hauschild, M. Z. (2022). Outside the safe operating space of the planetary boundary for novel entities. Environmental Science & Technology, 56(3), 1510–1521. https://doi.org/10.1021/acs.est.1c04158

Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S., Donges, J. F., Drüke, M., Fetzer, I., Bala, G., Von Bloh, W., Feulner, G., Fiedler, S., Gerten, D., Gleeson, T., Hofmann, M., Huiskamp, W., Kummu, M., Mohan, C., Bravo, D., ... Rockström, J. (2023). Earth beyond six of nine planetary boundaries. Science Advances, 9(37). https://doi.org/10.1126/sciadv.adh2458

Rockström, J., Gupta, J., Qin, D., Lade, S. J., Abrams, J. F., Andersen, L. S., Armstrong McKay, D. I., Bai, X., Bala, G., Bunn, S. E., Ciobanu, D., DeClerck, F., Ebi, K., Gifford, L., Gordon, C., Hasan, S., Kanie, N., Lenton, T. M., Loriani, S., … Zhang, X. (2023). Safe and just Earth system boundaries. Nature, 619, 102–111. https://doi.org/10.1038/s41586-023-06083-8

Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U., … Foley, J. (2009). Planetary Boundaries: Exploring the safe operating space for humanity. Ecology and Society, 14(2). https://www.jstor.org/stable/26268316

Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., de Vries, W., de Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., & Sörlin, S. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855. https://doi.org/10.1126/science.1259855

The Ellen MacArthur Foundation. (2019). Completing the picture: How the circular economy tackles climate change. https://circulareconomy.europa.eu/platform/sites/default/files/emf_completing_the_picture.pdf


Refbacks

  • There are currently no refbacks.