Circular chemistry: Adapting linear chemistry to mitigate the climate crisis

Bianca Stadelmann, Chris Slootweg


In this article we explore the imperative shift from a linear economic model to a circular one, with a particular focus on the pivotal role of chemistry in this transition. It elucidates the critical global challenges stemming from unsustainable resource extraction and the linear «take-make-dispose» approach, including climate change, resource depletion, and biodiversity loss. Circular chemistry emerges as a promising solution, guided by principles of green chemistry and circular economy. It advocates for perpetual material cycles, emphasizing sustainable end-of-life strategies and product design that prioritizes reuse and recycling. We underscore the need for chemistry to prioritize efficiency, safety, and circularity, while also addressing challenges associated with complex waste streams and the responsible mineralization of chemicals. Achieving circular chemistry necessitates cooperation among individuals, educational and scientific institutions, industries, and regulatory bodies, and as such it can significantly contribute to mitigating global environmental crises by establishing sustainable material circulation as a cornerstone principle.


circular chemistry; sustainability; environmental crises; planetary boundaries; circular economy



Bachmann, M., Zibunas, C., Hartmann, J., Tulus, V., Suh, S., Guillén-Gosálbez, G., & Bardow, A. (2023). Towards circular plastics within planetary boundaries. Nature Sustainability, 6(5), 599–610.

Earth Overshoot Day. (2023, 5 June). This year’s Earth Overshoot Day lands on August 2: The trend is flattening but still far from reversing [Press release].

Ellen MacArthur Foundation. (2019). Completing the picture: How the circular economy tackles climate change.

Flerlage, H., & Slootweg, J. C. (2023). Modern chemistry is rubbish. Nature Reviews Chemistry, 7, 593–594.

Galán-Martín, Á., Tulus, V., Díaz, I., Pozo, C., Pérez-Ramírez, J., & Guillén-Gosálbez, G. (2021). Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries. One Earth, 4(4), 565–583.

Keijer, T., Bakker, V., & Slootweg, J. C. (2019). Circular chemistry to enable a circular economy. Nature Chemistry, 11(3), 190−195.

Kümmerer, K., Clark, J. H., & Zuin, V. G. (2020). Rethinking chemistry for a circular economy. Science, 367(6476), 369–370.

Liu, Z., He, X., Fang, C., Camacho-Forero, L. E., Zhao, Y., Fu, Y., Feng, J., Kostecki, R., Balbuena, P. B., Zhang, J., Lei, J., & Liu, G. (2020). Reversible crosslinked polymer binder for recyclable lithium sulfur batteries with high performance. Advanced Functional Materials, 30(36), 2003605.

Mahaffy, P. G., Matlin, S. A., Holme, T. A., & MacKellar, J. (2019). Systems thinking for education about the molecular basis of sustainability. Nature Sustainability, 2(5), 362–370.

Anastas, P. T., & Warner, J. C. (1998). Green chemistry: theory and practice. Oxford University Press.

Persson, L., Carney Almroth, B. M., Collins, C. D., Cornell, S., de Wit, C. A., Diamond, M. L., Fantke, P., Hassellöv, M., MacLeod, M., Ryberg, M. W., Søgaard Jørgensen, P., Villarrubia-Gómez, P., Wang, Z., & Hauschild, M. Z. (2022). Outside the safe operating space of the planetary boundary for novel entities. Environmental Science & Technology, 56(3), 1510–1521.

Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S., Donges, J. F., Drüke, M., Fetzer, I., Bala, G., Von Bloh, W., Feulner, G., Fiedler, S., Gerten, D., Gleeson, T., Hofmann, M., Huiskamp, W., Kummu, M., Mohan, C., Bravo, D., ... Rockström, J. (2023). Earth beyond six of nine planetary boundaries. Science Advances, 9(37).

Rockström, J., Gupta, J., Qin, D., Lade, S. J., Abrams, J. F., Andersen, L. S., Armstrong McKay, D. I., Bai, X., Bala, G., Bunn, S. E., Ciobanu, D., DeClerck, F., Ebi, K., Gifford, L., Gordon, C., Hasan, S., Kanie, N., Lenton, T. M., Loriani, S., … Zhang, X. (2023). Safe and just Earth system boundaries. Nature, 619, 102–111.

Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U., … Foley, J. (2009). Planetary Boundaries: Exploring the safe operating space for humanity. Ecology and Society, 14(2).

Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., de Vries, W., de Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., & Sörlin, S. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855.

The Ellen MacArthur Foundation. (2019). Completing the picture: How the circular economy tackles climate change.


  • There are currently no refbacks.