
Few rational people would accept the results of a 
scientifi c investigation if subsequent attempts to 
validate those results had already failed. So what 
would happen to the name of science if it were 
discovered that many respected studies’ fi ndings 
were non-reproducible? We may be in the process 
of fi nding out. In a well-publicized coincidence, two 
pharmaceutical fi rms recently 
reported that they were only 
able to fully reproduce the 
peer-reviewed and published 
results of a small proportion of 
attempted studies: 20-25 % for 
one fi rm (Prinz, Schlange and 
Asadullah, 2011) and 11 % for the 
other (Begley and Ellis, 2012). 
Most of these studies tested 
investigational cancer treatments, 
where the failure rate of clinical 
trials is known to be high, but these fi ndings are 
hardly unique. Researchers in other scientifi c fi elds 
have noted a shortfall in reproducible experimental 
results (see Hirschhorn, 2002, for example).

We echo the sentiment expressed in another 
related article: «When seemingly implausible claims 
are made with conventional methods, it provides an 
ideal moment to reexamine these methods.» (Rouder 

and Morey, 2011). A good place to start such a 
reexamination is conventional statistical methods. 
Although not well publicized outside of the statistical 
literature, there is a growing body of evidence 
suggesting that classical hypothesis tests, as they are 
typically used, are prone to overstating the strength 
of statistical trends (Edwards et al., 1963; Berger and 

Sellke, 1987; Johnson, 2013a, 
2013b). As a consequence, the 
very practices scientists use 
for analyzing their data are 
implicated as causes of the 
non-reproducibility of scientifi c 
research.

■  REACHING WRONG 
CONCLUSIONS

The problem associated with 
classical testing can be illustrated in a simple example. 
Imagine that disease W is known to kill 2 out of every 
3 patients who contract it. Suppose that experimental 
drug A promises to improve the survival rate. If 
researchers perform a clinical trial, administering 
A to 16 patients, and 9 of these patients survive, 
then how does one conclude whether the drug was 
effective or not? If it were not effective, we would 
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expect about one-third of 16, say 5, patients to survive. 
Is 9 patients «about» 5 patients? Or is it different 
enough from 5 to warrant a claim that the trial’s 
results are «signifi cant», i.e. drug A is effective?

The conventional method for answering this 
question is a one-sided hypothesis test with which 
we test a null hypothesis against its alternative. Let 
p denote the population survival rate after treatment 
with drug A, whatever it may be. The null hypothesis 
(H0) states that p is less than or equal to 1/3, which 
means that the drug is ineffective. The alternative 
hypothesis (H1) states that p is greater than 1/3, which 
means that A helps, to some extent.

In standard statistical practice, the null hypothesis 
is rejected in favor of the alternative hypothesis if the 
p-value of the experiment comes in below 0.05, where 
the p-value is defi ned as the probability, if H0 is true, 
of collecting data at least as extreme as the observed 
data. Thus, 0.05, which is known as the «size» of the 
test, is a threshold that divides the p-values that reject 
H0 from those that do not. In the aforementioned 
drug trial, 9 out of 16 patients survived the disease 
after treatment with A. The p-value, the probability 
of observing 9 or more survivors among 16 patients, 
if p is 1/3, can be calculated from simple probability 
theory. This value turns out to be slightly less than 
0.05. Thus, in a size 0.05 test we can reject the null 
hypothesis and conclude that the drug is effective.

The problem here, with regard to false discoveries 
and non-reproducibility, is that we are more likely 
to have made an incorrect conclusion than we may 
realize. Although some believe otherwise, a p-value 
of 0.05 does not mean that the probability that the 
null hypothesis is true is 0.05 (a 
nice discussion of this is found 
in Sellke, Bayarri and Berger, 
2001). In fact, if we assume that 
the new drug is equally likely 
to be effective as ineffective, 
then the probability in favor of 
the null hypothesis is at least 
0.15, which is distressingly high 
given that we just rejected it! 
This is the central problem of 
classical hypothesis testing: the 
p-value, when compared to a 0.05 threshold, may be 
small enough to reject the null hypothesis (meaning 
that the drug was ineffective), but it can still have a 
relatively high probability of being true. For scientists 
(indeed, for whole scientifi c disciplines) to continue 
using such a high threshold, while rarely reporting the 
probability that the null hypothesis is true, creates a 
breach in the defenses of statistical rigor that allows 

all kinds of erroneous claims to sneak into the 
hallowed realm of Scientifi c Fact.

Actually, the 0.15 probability is a best-case 
scenario. Calculating the probability in favor of the 
null hypothesis is not a classical computation, but 
rather a Bayesian one. Bayesian computations require 
additional assumptions above and beyond those 
made in classical methods. These assumptions are 
called «prior» assumptions because they are made 
before any data are collected, like a preconceived 
notion that the experimenter carries into the research. 

In contrast, results that follow 
from data analysis are called 
«posterior» results. The value 
0.15 is a posterior probability 
in favor of the null hypothesis. 
Calculating it requires two prior 
assumptions. First, we must 
specify the prior probability that 
the null hypothesis is true, or 
our confi dence in H0 before we 
recruit a single patient. Second, 
we must assume a value for p 

under the alternative hypothesis, since it is obviously 
higher than 1/3 if the drug is effective. 

Regarding the fi rst assumption, here and 
throughout, we have simplifi ed the exposition by 
assuming that the prior probability of H0 (and H1, for 
that matter) is 0.5. In the absence of any previous 
information about the new drug, this might well be a 
reasonable assumption.
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More troubling, though, is the question of what 
value should be p assumed to take, assuming that 
the alternative hypothesis is true (meaning, in the 
example in question, that the drug is effective). 
Differing assumptions regarding this probability 
lead to varying posterior probabilities in favor of the 
opposite hypothesis, H0, and, therefore, to different 
conclusions. We calculated the value of 0.15 by 
assuming that if p was not 1/3, then it was 9/16. Of 
course, we could have set it anywhere between 0 and 
1, but once the trial was conducted and 9 patients 
survived, the prior assumption that p = 9/16 turned 
out to be, of all the prior assumptions we could have 
made, the most hostile towards H0 (and yet we should 
recall that the resulting posterior probability of the 
null hypothesis, 0.15, was disheartening because it 
was not hostile enough). If we had instead assumed 
some other prior value of p, the posterior probability 
would have been even higher than 0.15. For instance, 
for a prior assumption that p is either 0.3618 or 0.75, 

the posterior probability of the null hypothesis rises 
to 0.39.

■  WHEN STATISTICAL DATA SUPPORTS 
UNSCIENTIFIC CLAIMS

There are three key takeaways from this example. 
First, it is evident that posterior probabilities 
frequently do not convey the same decisive indictment 
against the null hypothesis that classical p-values do. 
Second, posterior probabilities are highly dependent 
on the prior assumptions made concerning the 
parameter of interest under the alternative hypothesis, 
so that prior assumptions subjectively affect the 
outcome of the analysis. Third, the use of inadequate 
statistical methods can easily result in risky and 
wasteful outcomes, such as an ineffective cancer drug 
receiving scientifi c endorsement.

Takeaways one and two are illustrated in a highly 
publicized investigation into extrasensory perception. 
Bem (2011) reported the results of nine experiments 
that tested for the existence of extrasensory 
perception, where the null hypothesis claimed that it 

Science is based in the reproducibility of results. Two 
pharmaceutical fi rms recently reported that they were only able 
to fully reproduce the peer-reviewed and published results of less 
than 25 % of their attempted studies. In the photograph, patients 
in a clinical trial.

The central problem of classical hypothesis testing is that the 
p-value may be small enough to reject the null hypothesis but it 
can still have a relatively high probability of being true. This allows 
all kinds of errors, such as an ineffective cancer drug receiving 
scientifi c endorsement.
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did not exist and the alternative hypothesis claimed 
that it did. The author analyzed each experiment’s 
data by calculating classical p-values, and eight of the 
nine experiments yielded p-values under 0.05. There 
were eight signifi cant results in favor of extrasensory 
perception’s existence.

Wagenmakers et al. (2011) criticized Bem for, 
among other things, relying on p-values, given their 
known tendency to exaggerate the weight of evidence 
against the null hypothesis, and provided a reanalysis 
of the data using Bayesian methods. They found 
posterior probabilities in favor of this hypothesis 
that claimed the non-existence of extrasensory 
perception ranging between 0.15 and 0.88 for the nine 
experiments and concluded «the data of Bem do not 
support the hypothesis of precognition». In response, 
Bem, Utts and Johnson (2011) pointed out that the 
results of Wagenmakers et al. were highly sensitive to 
the prior assumptions made on the effect size under 
the alternative hypothesis. They further argued that 
those assumptions heavily weighted effect sizes that 
are not normally found in psychological experiments. 
Finally, they reanalyzed the data using the same 
Bayesian methods, but with «knowledge-based» prior 
assumptions underpinning the alternative hypothesis 
that put more weight on smaller effect sizes, and 
found posterior probabilities 
in favor of the null hypothesis 
ranging from 0.09 to 0.67, with 
most below 0.3.

■  UNIFORMLY MOST 
POWERFUL BAYESIAN TESTS

The hot debate over the methods 
used in Bem (2011) – which 
comprises many more articles 
than those here cited here – 
underscores the untrustworthy 
nature of p values and the controversy surrounding 
methods for calculating posterior probabilities. 
Depending on your opinion of extrasensory 
perception, it may also demonstrate how a misplaced 
trust in classical statistical hypothesis testing can 
award peer-reviewed approbation to a specious, 
unscientifi c claim.

Recently, we proposed a new approach toward 
resolving the second of these problems: that of 
aplying prior assumptions to p. The basic idea behind 
our proposal is that fi rst, relevant stakeholders in 
the research should specify an evidence threshold 
for the posterior probability in favor of the null 
hypothesis, somewhat analogous to the threshold 

used for p-values. Following 
that, but before collecting data, 
researchers – who normally hope 
to reject H0 when the results 
come in – should be allowed 
to make the prior assumption 
under the alternative hypothesis 
that maximizes their chance of 
rejecting the null hypothesis. It 
turns out that this can be done 
in a relatively straightforward 
manner for a fairly broad class 

of tests. The resulting tests are called uniformly most 
powerful Bayesian tests, and we can illustrate their 
use in the context of our hypothetical drug trial.

Suppose the clinical trial’s sponsor demands, for 
example, that the null hypothesis only be rejected 
if its posterior probability falls below 0.05. For an 
experimenter who wants to declare the new drug a 
success, the relevant question in setting p under the 
alternative hypothesis then becomes, «What assumed 
value of p will maximize the probability that the 
posterior probability in favor of H0 will fall below 
0.05?»

Using methodology in Johnson (2013a), the most 
favorable prior assumption that the investigator 

The probability in favor of the Higgs boson particle’s existence 
may be in the neighborhood of 0.999963 to 0.999 977. Strong 
evidence, but perhaps not quite as strong as that implied by the 
original report. In the photograph, the physicists François Englert 
and Peter Higgs, during the announcement of the discovery in the 
CERN.
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can make is p = 0.63. This value maximizes the 
probability that the posterior probability of the null 
hypothesis will fall below 0.05, regardless of the 
true value of p. From the investigator’s perspective, 
this is the optimal choice of all possible assumptions 
under the alternative hypothesis, and if we allow 
investigators to make this choice, the subjectivity in 
selecting the alternative hypothesis is eliminated.

Incidentally, using a prior 
survival probability under the 
alternative hypothesis of p = 0.63 
and a threshold of 0.05 means 
that the null hypothesis will 
only be rejected if 11 or more 
patients survive after receiving 
drug A. This is the same criterion 
that would be used to reject the 
null hypothesis in a classical test 
of size 0.004. Hence, requiring 
the posterior probability for the null hypothesis to 
fall beneath a low threshold (0.05) for signifi cance 
implies that the p-value must fall beneath a very 
low threshold (0.004). In this case, uniformly most 
powerful Bayesian tests have simultaneously provided 
an objective way to make prior assumptions under H1 
and curtailed the excessive permissiveness of classical 
hypothesis tests.

Furthermore, because uniformly most powerful 
Bayesian tests can be used to specify objective 
prior assumptions under the alternative hypothesis, 
they are useful for going back and computing 
posterior probabilities in publications where classical 
p-values were originally reported. Using these 
methods, Johnson (2013a) argues that the posterior 
probability in favor of the Higgs boson particle’s 
existence may be in the neighborhood of 0.999963 
to 0.999977 – strong evidence, but perhaps not quite 
as strong as that implied by the reported p-value 
of 3x10-7. In another article (2013b), he uses these 
tests to estimate that between 17 % and 25 % of all 
marginally signifi cant fi ndings in two psychology 
journals during 2007 are, in fact, false discoveries. 
Finally, returning to the study on extrasensory 
perception, we can use an approximate version of 
the uniformly most powerful Bayesian test to obtain 
posterior probabilities for the null hypothesis between 
0.12 and 0.39, when 0.05 is used as the threshold for 
signifi cance.

■ CONCLUSION

In summary, we wish to emphasize that currently 
used thresholds in classical tests of statistical 

signifi cance are responsible for much of the non-
reproducibility of scientifi c studies highlighted in 
the popular press and in subject matter journals. 
Among the thousands of claims made in publications 
every year, a large fraction of those which are 
marginally signifi cant at the 0.05 level are, in fact, 
false discoveries. However, Bayesian testing methods 
that calculate the posterior probability in favor of the 

null hypothesis alleviate the 
unreliability of p-values, and 
when prior assumptions under 
the alternative hypothesis are 
made using uniformly most 
powerful Bayesian tests, the 
resulting posterior probability is 
both objective and equivalent to 
a classical test, but with higher 
standards of evidence. We view 
these Bayesian testing methods 

as a simple and potent way to reduce the non-
reproducibility in modern science. 
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