
■ EPIDEMIOLOGY AND SPATIAL STATISTICS

It is very common to fi nd towns where people believe 
that their health is worse than the health of the 
surrounding municipalities. For some reason their 
inhabitants think their chances of dying, due to one or 
many specifi c causes, are higher compared to those 
of the inhabitants of neighbouring towns. Giving an 
adequate response to such a belief entails a great 
statistical complexity that is diffi cult to foresee given 
the simplicity of the question at 
hand. 

Epidemiology attempts to 
identify the links between the 
presence of both risk factors and 
diseases in specifi c population 
groups. This task is «relatively» 
simple at a population level; 
it is all about getting the 
appropriate sample with the 
required amount of participants. 
However, focusing on population samples rather 
than individuals has made epidemiology a unique 
discipline within medicine and the main generator 
of knowledge regarding diseases. One of the 
risk factors historically studied is the geographic 
location of people; i.e. whether or not this can have 
an infl uence on the presence of a specifi c disease. 
Establishing this relationship can be very useful for 
medical professionals, because it can provide some 
possibly unknown clues that some characteristic of a 

particular region might have an infl uence on the risk 
of developing a specifi c disease.

However, when studying the relationship between 
geographical locations and the presence of a certain 
disease the size of the unit of study is of great 
relevance. Obviously, someone who suspects that his 
or her town has a high mortality rate due to some 
specifi c disease will not just be content knowing 
that, taking into account the whole region, the 
mortality rate is within reasonable parameters. In 

addition, working with large 
units of study means that an 
exceptional increase of the risk 
in a very specifi c location may 
be blurred by the regular risk in 
the rest of the unit. Consequently, 
it is advisable to work with 
the smallest geographic units 
possible in order to conduct 
studies of this kind. However, 
working with small geographic 

units affords limited information. As a result, 
problems that require the use of appropriate statistical 
techniques for this specifi c type of situation arise.

The mortality rates we are referring to, from an 
epidemiological perspective, would be calculated as 
the result of dividing the actual number of deaths 
between the expected number in each municipality 
based on its size and the composition of its population 
and multiplying it by 100. This indicator is known 
as the standardised mortality ratio (or rate). If this 

«EPIDEMIOLOGY TRIES TO 

IDENTIFY THE LINKS BETWEEN 

THE PRESENCE OF BOTH 

RISK FACTORS AND DISEASES 

IN SPECIFIC POPULATION 

GROUPS»

 MÈTODE 151

MONOGRAPH
MÈTODE Science Studies Journal, 5 (2015): 151-157. University of Valencia. 
DOI: 10.7203/metode.83.3828
ISSN: 2174-3487.
Article received: 20/07/2014, accepted: 15/09/2014.

SYMPTOMS, SIGNS AND STATISTICS
STATISTICS APPLIED TO THE HEALTH AND LIFE SCIENCES

MIGUEL A. MARTÍNEZ-BENEITO, JOSÉ D. BERMÚDEZ and CARMEN ARMERO

Experimental determination or detection of the physiological mechanisms underlying disease is by 
and large a highly complex task. This fact has turned epidemiology into the main tool for generating 
knowledge in the medical fi eld. Epidemiology studies diseases by monitoring the health of groups 
of people, rather than through individual observations. If the primary tool for generating medical 
knowledge is based on the observation of groups of people (population samples) from which we wish 
to learn (make inferences), then the link between statistics and medicine is clear. Here we illustrate this 
nexus presenting three statistical research areas that are particularly valuable for biomedical research.
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ratio is greater than 100 (respectively less) in a specifi c 
geographic location, this would indicate that there 
have been more (respectively less) deaths than would 
be expected given the size of its population, i.e. the 
location has risk excess. When working with small 
geographical units, the number of expected deaths 
will be, in turn, very small. Therefore, the ratio 
above will be either 0, if there have not 
been any deaths in the population, or 
a number considerably higher than 100, 
in the opposite case. So, if we use these rates, 
small municipalities will necessarily show 
extreme mortality rates, simply because 
of their size, regardless of the risk they 
might be associated with. We can visualise 
this in the map shown in Figure 1, which 
corresponds to the mortality caused by oral 
cancer in each municipality of the region of the 
Valencian Community. This fi gure shows that 
the inland areas of the provinces of Castellón and 
Valencia (the least populated areas of the Valencian 
Community) always present extreme rates, which 
does not mean that the risk in those areas is 
necessarily high or low. 

Fortunately, statistics offers epidemiology 
inference tools that help to solve this problem. 
A number of models that consider the risks of 
municipalities as interdependent values have been 
proposed, in opposition to the standardised mortality 
ratio, which assumes such values as independent 
quantities. In particular, it is generally considered that 
the risks of neighbouring towns tend to be similar, 
unlike the risks of municipalities that are further away 
(Besag et al., 1991). This assumption makes it possible 
for neighbouring towns to share information with each 
other and thus we can obtain more solid estimates of 
these risks based on a greater amount of information 
(regarding each town and their neighbours). The right-
hand map of Figure 1 shows 
the distribution of mortality 
estimated with a statistical model 
of the kind mentioned above, 
using the same data as in the left-
hand map of the same fi gure. The 
smaller municipalities no longer 
seem to behave in any particular 
manner, and have more or less 
neutral values. Only the towns and surrounding areas 
with statistically sound mortality fi gures display truly 
extreme risk values.

The contribution of statistics has made the study of 
mortality, as well as other health indicators, in small 
areas a research fi eld in itself known today as disease 

mapping. This fi eld has made the 
geographical study of health to a 
very detailed level possible today 
and a large number of articles are 
constantly published on the subject. 
These studies provide interesting 
clues, hypotheses and knowledge 
about the diseases studied. 

Undoubtedly, disease mapping is a clear example of 
the symbiosis between statistics and medicine. On the 
one hand, medicine offers statistics a fi eld where it can 
develop and become meaningful, while on the other 
hand, statistics provides medicine with technical tools 
to accomplish its specifi c goals.
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Figure 1. Estimation of the mortality risk due to oral cavity and 
pharynx cancer for the municipalities of the Valencian Community. 
The map on the left refl ects the estimate obtained by the 
standardised mortality ratio, an indicator frequently used in 
epidemiology. The map on the right employs the same estimate 
obtained from Besag, York and Mollie’s statistical model. In both 
maps brown municipalities represent locations with higher risk in 
contrast with those depicted in green.
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■ CLINICAL TRIALS AND STATISTICS

A clinical trial is an experimental research project 
that uses humans as experimental units in which to 
intervene actively in order to assess the safety and 
effi cacy of the intervention. This intervention may 
consist of a new treatment, a vaccine or a diagnosis 
or early diagnosis technique, etc. Since it involves 
experimentation with human beings one must 
follow strict ethical criteria from the planning to the 
completion of the trial. These criteria are listed in 
the Declaration of Helsinki of the World Medical 
Association and in its subsequent amendments. Most 
of these ethical criteria have been transposed into 
current legislation in Spain, such as the SCO/256/2007 
of 5 February on good clinical practise. As a result, 
a clinical trial can only be proposed when there is 
already some evidence regarding the safety and 
effi cacy of the intervention to be assessed, evidence 
based on observational studies 
and preclinical trials. Such trials 
must be approved by an ethics 
committee and the patients 
enrolled must be voluntary, fully 
informed of any of the risks the 
test involves and aware that they 
can leave whenever they want.

Clinical trials have become a 
basic tool for medical research, 
since they are the most effective 
way to compare the effectiveness of a new treatment 
with the one currently in use (Cook and DeMets, 2008). 
This is so because observational studies can establish 
associations between risk factors and disease, but it 
cannot easily prove causality; that is, whether the 
observed effect can be directly attributed to the new 
treatment or not. According to Rubin’s causal model 
(Rubin, 1974; Holland, 1986), in order to demonstrate 
causality, one should, ideally, observe the response 
of individual patients to the new treatment, YT, and 
at the same time their response if they have not been 
treated or have received conventional treatment, YC. 
The difference between the two values, YT – YC, is the 
effect directly attributable to the new treatment in that 
individual and is known as the «Rubin causal effect»; 
the average population effect is the expected value 
of this difference, E (YT – YC), which can be estimated 
using the arithmetic mean of the differences obtained 
in the observed patients. However, it is impossible to 
observe at the same time and in the same patient the 
response with and without the treatment, both YT and 
YC. Only one of these responses can be observed: this is 
the «fundamental problem of causal inference».

An important result of the theory of probability, 
the linearity of the expected value, circumvents the 
fundamental problem of causal inference, since it states 
that E (YT – YC) = E (YT) – E (YC); that is, the population 
mean effect is the average response to treatment, E (YT), 
minus the average response to no treatment, E (YC), and 
these average responses can be estimated separately 
using two different patient groups or the same group 
of patients in two different time periods. However, 
separate estimation involves other potential diffi culties, 
possible sources of bias, which need to be avoided. 
Particularly, we must ensure that the two samples used 
to estimate the E (YT) and E (YC) effects separately 
are representative of the same population; we cannot 
treated patients to have some feature that differentiates 
them from the untreated ones. The easiest way to 
ensure this representativity in the same population is 
by recruiting patients fi rst and thereafter assigning each 
patient to either the treated or the untreated group by 

means of any external random 
mechanism, e.g. tossing a coin. 
This is only possible in a study in 
which there is active intervention 
of the research team, as occurs 
in a clinical trial, but not in an 
observational study.

The clinical trial is prospective 
if there is follow-up of the enrolled 
patients in the near future, which 
can last for days, months or even 

years. The clinical trial is controlled if there are at least 
two groups of patients; the new treatment is applied to 
a patient group called «treatment group» and another 
treatment, frequently the most widely used at the 
time, is applied to another group of patients known as 
the «control group». There can be multiple treatment 
groups if we want to compare several treatments or 
therapeutic procedures. The trial is concurrent if all 
groups are recruited and observed simultaneously. It 
is randomised if the allocation of each patient to one 
of the groups is done at random; tossing a coin is an 
option, but more sophisticated procedures that use 
pseudo-random numbers, which enable the repetition of 
the process in a possible audit, are generally employed. 
If the trial is prospective, controlled, concurrent and 
randomised, it will meet the requirements of Rubin’s 
causal model, making it possible to demonstrate 
causality. This type of study should be used whenever 
possible (Matthews, 2006). Furthermore, to avoid 
bias among patients and health professionals when 
evaluating the effect of the treatment, we strongly 
advise the trial be made a double blind one: neither 
the patient nor the health professionals monitoring and 
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evaluating should know the allocation of each patient.
The calculation of the sample size for the trial – the 

number of patients who take part in it – must also 
be determined in advance for ethical reasons. If the 
size of the sample is too small, it will provide too 
little information, so there will be very little chance 
of obtaining interesting results. This is not justifi able 
ethically, as patients will be put at risk with little or no 
guarantees of the trial being useful. Conversely, if the 
sample size is too large, more patients than needed will 
be exposed to an inferior treatment, which is not ethically 
justifi ed either. To calculate an appropriate sample size 
power functions are usually used.

Power functions calculate the 
probability of results being able to 
determine if there are differences 
between the study groups 
depending on the real magnitude of 
this difference. The power function 
at zero value should be small, since 
this is the probability of drawing 
a wrong conclusion when fi nding 
differences between groups when 
in fact there are none. It usually 
needs to be smaller or equal to 
α = 0.05. At nonzero values, this 
function provides the probability 
of correctly concluding that there 
are differences, so in these cases 
it should be as large as possible. The sample size is 
obtained by establishing a reasonable distance between 
the effects of the groups we are comparing and the 
power to be reached from that distance.

Figure 2 shows three power functions typically used 
to compare two means, the «Student’s t-test». These 
functions correspond to a signifi cance value of α = 0.05, 
so they take this value at zero, which is the point that 
represents the null hypothesis of equal means. The 
dashed vertical line marks a distance between them of 0.5 
standard deviation; at that distance and using 40 pieces 
of data, 20 in each group, we can only obtain a power of 
0.35, which is too small a value. Using 128 pieces of data, 
64 in each group, we obtain a power of 0.8. If we use 128 
pieces of data, but distribute 28 in one group and 100 in 
the other, a lower power is obtained if compared to the 
results we would get if the groups had the same sample 
size. This is why it is advisable that the sample size of the 
groups remains the same.

Statistics provides the fi eld of medicine with 
statistical inference methods that analyse the fi nal results 
of the clinical trial and lead us to draw conclusions. 
Many of these methods are also widely used in other 
fi elds of knowledge, while others have been developed 

specifi cally in the context of health 
and life sciences, such as statistical 
survival methods and longitudinal 
models. Moreover, statistics also 
provide experimental design 
methodology that may prove very 
useful when planning the trial, 
helping to avoid bias and providing 
tools for the calculation of the 
sample size.

■  SURVIVAL STATISTICS AND 
LONGITUDINAL STUDIES

Survival analysis (Aalen et al., 
2008) is the statistical methodology specialised in 
analysing data that correspond to the elapsed time 
between two events – the initial event and the event of 
interest – in scientifi c studies in health sciences and 
biology. This time is generally known as survival time, 
a name inherited from the prototypical event of interest, 
death, common in early studies on the subject and that 
will be used in a general manner in this paper.

Survival analysis applied to non-biological contexts 
is known as reliability analysis. So when it comes 
to studying the lifetime of a person from birth to 
death, the time elapsed from infection with human 
immunodefi ciency virus (HIV) to a diagnosis of 
acquired immunodefi ciency syndrome (AIDS) or the 
survival of the red palm weevil after infesting a palm, 
we are talking about survival analysis. If, on the contrary, 
the goal is to analyse the time from start-up to failure 
of the cooling system at a nuclear power plant, the time 
between consecutive earthquakes in the Gulf of Valencia 
or how long the mosaic facade of a public building lasts, 
we are talking about reliability analysis.

To observe a survival time one must wait until the 
event of interest occurs. This situation is hardly feasible 
in survival studies because its duration is usually 
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Figure 2. Power functions in a Student’s t-test to compare the 
means of two populations, using designs with different sample 
sizes, assuming equal variances and a signifi cance level of α = 0.05; 
n and m are the sizes of each of the two samples.
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limited and, in most cases, the study concludes with 
no event of interest observed in any of the individuals 
from the sample. Thus, the resulting data will contain 
the entire duration of survival of individuals for 
whom the event is registered as well as the incomplete 
survival, censored on the right, of individuals who 
«are still alive» at the end of the study. The existence 
of censored data in a survival study makes its analysis 
through traditional statistical methods impossible 
(Figure 3). 

The survival function and the risk function are 
basic concepts of survival analysis. The former allows 
us to estimate probabilities associated with specifi c 
moments in time, such as a person diagnosed with colon 
cancer surviving over fi ve years. The risk function is 
a rate and as such quantifi es, for example, the risk of 
death in people who have undergone a delicate surgical 
procedure, usually decreasing as the postoperative 
period lengthens.

Not all people face situations the same way others 
do, much less regarding mortality and morbidity 
issues. Survival times associated with an event are 
often related to a set of risk variables whose values 
can help us understand the different survival times 
of different individuals within a population a little 
better. For example, it is known that a person with high 
levels of cholesterol has a higher risk of presenting 
cardiovascular problems than a person with lower 
levels. The Cox regression models and the so-called 
accelerated lifetime models let us model the survival 
function as well as the risk function using these 
variables, both when they can and cannot be observed 
or have not been registered, in the knowledge that 
heterogeneity is a possibility. We can quantify their 
importance in terms of probability, the natural 
language of statistics, thanks to statistical inference, 
and to Bayesian methodology in particular.

Cross-sectional studies collect information from 
sampled individuals at a single, very specifi c point in 
time. They are fast running and generally inexpensive. 
Longitudinal studies (Diggle et al., 2002), based on 
repeated measurements of the same individual over 
time, are costly and slow because, like survival studies, 
they require extended periods of observation (Figure 4). 
They are particularly important in the epidemiological 
studies of chronic diseases (Alzheimer’s disease, 
asthma, cancer, diabetes, cardiovascular and renal 
diseases, AIDS, etc.), the main cause of mortality in the 
world and responsible for about 60 % of all deaths.

The origins of longitudinal models date back to the 
early nineteenth century with the pioneering work of 
the English mathematician George Biddel Airy (1801-
1892) in the fi eld of astronomy. Their popularisation 

in the world of statistics has come about with the 
great computational developments of the mid and late 
twentieth century, which have enabled their practical 
implementation and subsequent use in the statistical 
treatment of socially relevant scientifi c problems, such as 
research on the relationship between the CD4 cell count 
and the viral load as a marker of the progression of HIV 
infection.

Returning to survival studies, as we await the 
occurrence of the event of interest, we can conduct a 
longitudinal follow-up of the relevant variables in the 
study and incorporate the information to the survival 
model. This idea is the genesis of the so-called joint 
models for survival and longitudinal data. When, as in 

Figure 3. The graph on the left shows fi ve survival times in real time, 
from entry in the study until departure, representing when the event 
of interest (small coloured dot) or censored survival (white dot). The 
graph on the right contains the same information explained above 
but time is now according to the scale of the study, with a starting 
time common to all individuals, which determines their entry into 
the study. This would be the appropriate scale in the case of a 
hypothetical statistical analysis of the data.

time (calendar) time (study)

Figure 4. Statistical models to analyse longitudinal data are complex 
but also very powerful, because they are able to quantify not 
only the general evolution of the variable of interest in the target 
population, but also the specifi c progression of any individual or 
group of relevant individuals. The graph on the left shows some 
data in which the observations regarding the same individual are 
unidentifi ed, while the one on the right shows data regarding the 
same individual connected by a segment. The fi rst one shows a 
decreasing ratio over time; the second shows the opposite.
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the case described, the aim of the study focuses solely 
on survival, longitudinal models provide valuable 
information for the survival model, such as longitudinal 
measurements of prostate-specifi c antigen (PSA) in 
prostate cancer studies. Joint models, however, are 
more powerful because they make equal treatment 
between the two processes possible and enable the use 
of survival analysis tools in simple longitudinal studies. 
In this sense, the data in Figure 5 corresponds to a 
longitudinal study on the progression of chronic renal 
failure in Valencian children. The variable of interest is 
the estimated glomerular fi ltration rate (eGFR), which 
decreases as renal function worsens and provides 
information regarding the values that mark the different 
stages of the disease. During the follow-up period some 
children leave the study and we do not get the complete 
longitudinal information. If the reason for leaving the 
study is related to disease progression it is convenient to 
add this information to the longitudinal model. In our 
case, it is the children who are temporarily cured (their 
eGFR gradually increases until their medical discharge) 
or those that suffer a critical worsening of their renal 
function and require renal replacement therapy (dialysis 
or transplant). By using joint models we can incorporate 
this information into a longitudinal analysis through 
a survival model that considers the need for renal 
replacement therapy and healing as events of interest, 

which are naturally incompatible. 
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Figure 5. Estimated glomerular fi ltration rate (eGFR) for a longitudinal study on the progression of chronic renal failure in Valencian children. 
EGFR levels are represented in the time scale arising from the diagnosis of the disease and different consecutive eGFR measurements for the 
same child appear connected by segments of the same colour.
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