
■ WHAT IS BIG DATA?

Recent years have seen a marked increase in our 
capacity to collect, store and share data. According to 
IBM, 90 % of the data in the world was generated in 
the last two years (International Business Machines 
Corporation, 2011). These data arise from the 
Internet (searches, social networks, blogs, pictures), 
smartphones, scientifi c studies 
(genomics, brain imaging, 
epidemiology, environmental 
research), businesses (customer 
records, transactions, fi nancial 
indicators), governments 
(population, healthcare, weather, 
automatic sensors) and other 
sources. 

The strategic importance of 
Big Data lies not on the quantity 
but on the potential uses. For 
instance, the characterization of complex diseases 
at the molecular level combined with medical and 
treatment history, diagnostic or imaging tests offers 
unprecedented opportunities for personalized 
medicine. The Large Hadron Collider records data 
40 million times per second to test theories in physics. 

Websites make millions of recommendations every 
day and study new products and their prices. Data 
can help manage cities or natural resources, study 
climate change or aid developing regions. Postings in 
blogs and social networks are used to devise political 
strategies and study how ideas spread.

Due to this far-reaching potential, Big Data has 
been embraced by media, academia and businesses 

in an enthusiastic, sometimes 
even sensationalist, manner. 
Terms such as data deluge 
or tsunami are common. The 
2012 World Economic Forum 
declared data as a new class of 
economic asset, like currency 
or gold (World Economic 
Forum, 2012). Data-related 
professions consistently top most 
rankings. I step back from the 
hype and review both success 

stories and limitations, pointing out perceived 
lessons and pending challenges. While Big Data 
requires a multidisciplinary approach, I adopt a 
statistical viewpoint. Statistics is the fi eld wholly 
devoted to collecting, analyzing and interpreting 
data. That is, to bringing us from questions to data, 
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Big Data brings unprecedented power to address scientifi c, economic and societal issues, but also 
amplifi es the possibility of certain pitfalls. These include using purely data-driven approaches that 
disregard understanding the phenomenon under study, aiming at a dynamically moving target, 
ignoring critical data collection issues, summarizing or preprocessing the data inadequately and 
mistaking noise for signal. We review some success stories and illustrate how statistical principles 
can help obtain more reliable information from data. We also touch upon current challenges that 
require active methodological research, such as strategies for effi cient computation, integration 
of heterogeneous data, extending the underlying theory to increasingly complex questions and, 
perhaps most importantly, training a new generation of scientists to develop and deploy these 
strategies.
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from data to information, and from information to 
knowledge and decisions. It might seem surprising 
then that statisticians have been relatively cautious in 
embracing Big Data as an almighty power. I believe 
that the explanation is simple. Experience has taught 
statisticians that data can be misleading and, even 
worse, wrongly give the semblance of objectivity. 
Along with power, Big Data also brings the 
opportunity for ample misconceptions. Because of the 
variety in applications (Big Data is often defi ned with 
3V’s: Volume, Velocity and Variety) a comprehensive 
review is hopeless; hence I limit discussion to some of 
the main issues and examples.

■ DATA AND THE UNDERLYING PROCESS

The account of how baseball manager Billy Beane 
used performance metrics and data analysis to 
assemble a competitive team (Lewis, 2003) became 
an instant classic of successful data stories, and even 
resulted in a major Hollywood fi lm. The notable feat 
is that his team performed better than higher-budget 
competitors assembled by baseball experts. The 
extremely accurate forecasts of UK (Curtice and Firth, 
2008) and USA (Silver, 2012) elections, amply beating 
political analysts, were other immediate hits. Other 
cases include weather predictions forecasting major 
catastrophes (Silver, 2012), or the explosion in -omics 
technologies underlying many, if not most, recent 
advances in biomedicine.

These stories may have given the wrong 
impression that data can reign alone. For instance, 
The New York Times interviewees claimed that 
data can replace experience and intuition, and 
that this leads to a more scientifi c approach (Lohr, 
2012). I could not be in stronger disagreement with 
this view, which illustrates a 
potential pitfall of Big Data. 
While it is true that untested 
opinions may lead to wrong 
conclusions, blind analyses do 
so just as often. The value of 
data and substantive expertise 
exist not in opposition but in 
complement of each other. In 
the examples above, predictions 
were successful because they 
studied fundamentally reproducible systems, and they 
incorporated an understanding of the phenomenon 
under study. The variables chosen to predict baseball 
performance had a natural subject-of-matter 
interpretation. Silver’s predictions incorporated 
his knowledge of US politics. Weather forecasts 

are based on computer simulations and physical 
laws, which meteorologists subsequently correct for 
systematic inaccuracies. New technologies are useless 
unless brilliant scientists pose relevant questions and 
interpret the results in context. 

A statistical mantra states that correlation does 
not imply causation. Nathan 
Eagle pioneered work to 
predict cholera in Rwanda 
from cell phone mobility data 
(Shaw, 2014). He observed that 
mobility correlated with cholera 
outbreaks and could hence help 
predict them. He later found 
that mobility really predicted 
fl oods, which reduce mobility 
and increase short-term risk of 

cholera outbreaks. He now incorporates insight on 
the activities going on in the villages when making 
predictions. There is no substitute to having an 
understanding of the phenomenon under study, i.e. 
the data-generating process, and bringing it into the 
analysis.

The strategic importance of Big Data lies not on the quantity but 
on the potential uses. For instance, the Large Hadron Collider 
records data 40 million times per second to test theories in physics.
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■ DYNAMICS IN THE DATA

The USA Centers for Disease 
Control and Prevention (CDC) 
report weekly numbers of doctor 
visits for infl uenza-like illnesses, 
but due to data handling the 
reports lag 3 weeks behind. 
Google Flu Trends (GFT) uses 
the number of fl u-related Internet 
searches to predict the eventual 
CDC report for the current 
week, providing real-time monitoring that was at one 
time claimed to be more accurate than CDC reports. 
Although GFT was not intended this way, it became a 
fl agship of Big Data and replaced traditional methods. 
However, Lazer et al. (2014), amongst others, 
reported that GFT predictions had not been that good. 
Although very accurate precise in their early days, 
the actual visits were systematically over-estimated 
later on. Simply predicting this week from the CDC 
report three weeks ago gave better predictions. Lazer 
et al. argue that the decrease in GFT accuracy is 
mostly due to changes in Google’s search engine. This 
example illustrates another important pitfall. In the 
baseball and other examples above, the underlying 
process generating the data stays mostly constant 
through time. Baseball rules are fi xed, political poll 
biases do not change much in the short term, and the 
laws of nature are constant. In contrast, changes in 
the search engine alter the process generating GFT’s 
input data, in turn modifying its relationship with the 
outcome we intend to predict. 

This is known as a dynamic system in the 
statistical literature and requires special techniques 

to incorporate its peculiar structure and realistically 
refl ect uncertainty. Predictions are based on observed 
data; hence an implicit assumption is that future 
data will be similar or at least evolve in a predictable 
fashion. When abrupt changes are possible, the 
confi dence in our predictions diminishes. Consider 
the failure to anticipate mortgage defaults in the Great 
Recession. The risk of default was estimated from 
data collected during a mostly expanding economy. In 
such periods the risk that individuals A and B default 
on their mortgages is not particularly correlated. 
Therefore the risk of widespread defaults was deemed 
low; even if some individuals failed to pay surely 
others would continue to be solvent. However, in 
periods of crisis defaults are strongly dependent. If 
the economy is bad and house prices decrease, many 
individuals may default at once and the chances of a 

general crisis are much higher 
(Gorton, 2009). This example 
illustrates a pitfall known as 
extrapolation. Even when we 
have some understanding of 
the data-generating process, 
making predictions in situations 
for which little or no data are 
available is dangerous. Most 
methods are calibrated to 
produce predictions that are 
good overall, but even when most 
predictions are accurate those 

under uncommon settings (e.g. patients with a rare 
variant of a disease) may fail completely. A careful 
consideration of the problem at hand cannot be eluded.

■ SIGNAL, NOISE AND BIASES

Theory tells us that, in principle, having more data 
is always good. With new data comes the potential 
for more information and, if this were not the case, 
one could always discard that data. No harm could 
possibly come from having more data. The fl aw in 
this reasoning is that, in practice, we do not discard 
data but try to look for patterns therein. A tempting 
pitfall is to torture the data until it appears to support 
some pre-conceived idea. This is not to say that 
data analysis should not be driven by pre-specifi ed 
hypotheses, but that an adequate strategy is required 
to reduce the chances of non-reproducible fi ndings. 
The last two decades have seen exciting advances 
in statistical methods to disentangle signal from noise 
in massive data. But these advances have not yet 
reached routine analyses. Nuzzo (2014) estimated that, 
when observing a p-value of 0.01 for a hypothesis 

The account of how baseball manager Billy Beane used 
performance metrics and data analysis to assemble a competitive 
team became an instant classic of successful data stories, and even 
resulted in a major Hollywood fi lm.
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with 19-to-1 odds of not being true, the probability 
of it being a false positive is 0.89. With Big Data 
we often record data because we are able to, not 
necessarily expecting a substantial amount of signal. 
The odds are then much higher than 19-to-1 and the 
chances of false positives skyrocket.

Another critical issue is that Big Data often comes 
from different locations, techniques or formats. These 
are not necessarily comparable or have the same 
quality and are often subject to various systematic 
biases. For instance, the ENCODE project is one of 
the largest initiatives following the Human Genome 
Project. The data were collected in labs all over the 
world, using multiple technologies and experimental 
procedures. When developing a system to visualize 
these massive data, we found systematic biases 
between microarray and sequencing technologies 
that needed to be corrected to avoid misleading 
interpretations (Font-Burgada et al., 2013). More 

generally, visualizing heterogeneous data for easy 
assimilation poses challenges, but progress is being 
made. For instance, blood fl ow visualizations devised 
by Michelle Borkin and her supervisors increased the 
ability of physicians to diagnose arterial blockages 
from 39 to 91 percent (Shaw, 2014). In the past, meta-
analysis methods were devised to combine evidence 
from multiple studies in a principled manner. Big 
Data calls for new methods of reliable data integration 
and visualization.

■ PLANNING IN ADVANCE

Big Data is changing how we collect evidence. Rather 
than carefully designing a study, there is some 
tendency to record as much data as possible, implicitly 
assuming that any patterns observed therein must 
surely be reliable. This misconception is a highly 
problematic pitfall. The representativeness of the data 
does not depend on the sample size but on the manner 
in which it is collected. Quality matters more than 
quantity. 

«RATHER THAN CAREFULLY DESIGNING 

A STUDY, THERE IS SOME TENDENCY TO 

RECORD AS MUCH DATA AS POSSIBLE, 

ASSUMING THAT ANY PATTERNS 

OBSERVED THEREIN MUST SURELY BE 

RELIABLE»

The USA Centers for Disease Control and Prevention (CDC) report 
weekly numbers of doctor visits for infl uenza-like illnesses, but 
due to data handling the reports lag 3 weeks behind. Google Flu 
Trends (GFT) uses the number of fl u-related Internet searches to 
predict the eventual CDC report for the current week, providing 
real-time monitoring that was at one time claimed to be more 
accurate than CDC reports.

Big Data often comes from different locations, techniques or 
formats. These are not necessarily comparable or have the same 
quality and are often subject to various systematic biases. This 
kind of problem was faced by the ENCODE project, one of the 
largest initiatives following the Human Genome Project. The 
data were collected in labs all over the world, using multiple 
technologies and experimental procedures. In the picture, the 
ENCODE team of HudsonAlpha Institute (Huntsville, USA).
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A classical example is a UK study with 20,000 children 
assessing the benefi ts of pasteurized milk. William 
Gosset, better known as Student, pointed out that, due 
to inadequate randomization, a study with only 6 twin 
pairs would have been more reliable (Student, 1931). 
A factor contributing to lack of attention to study design 
may be an excessive faith in new technologies. For 
instance, the scientifi c community received the advent 
of high-throughput sequencing (HTS) enthusiastically. 
I interacted with reputed researchers who argued that 
HTS studies with a single sample were as good as 
dozens of samples subjected to earlier technologies. 
While HTS is accurate, clearly a single sample cannot 
measure variability to compare populations. Another 
anecdote is that of HTS centers processing two 
samples on different dates when they should have 
been processed in parallel to avoid biases. As a result, 
expensive experiments were rendered virtually useless.

The extension of the experimental design theory 
pioneered by Ronald Fisher to Big Data has been 

mostly neglected, but there are notable exceptions. 
As we transition to personalized medicine, Berry 
(2012) has argued for clinical trials that adapt to 
ever-smaller patient subgroups and make individual 
decisions for each patient. Müller et al. (2004) 
proposed principled designs for massive hypothesis 
testing studies. Successful designs for observational 
studies have also been proposed. To show the 
advantages of public health insurance in Mexico, King 
et al. (2009) designed a study to compare insured and 
uninsured communities. Because these had similar 
characteristics, differences in health outcomes could 
be attributed to the insurance rather than external 
factors. 

■ A CASE FOR STATISTICS

Much in the way that pioneers such as Ronald Fisher, 
William Gosset or Harold Jeffreys set the basis for 
data-based science, business and public policy, the 

Netfl ix movie recommendations use a model that averages 107 predictions. Decision theory can help assess the benefi ts of complex 
algorithms in the face of uncertainty and competing goals; e.g. customer satisfaction may also depend on recommendation diversity. 
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Big Data paradigm is fueled by methodological 
contributions. The Pagerank algorithm used by 
Google’s engine is based on Markov Chains. Netfl ix 
movie recommendations use a model that averages 
107 predictions. Decision theory can help assess 
the benefi ts of complex algorithms in the face of 
uncertainty and competing goals, e.g. customer 
satisfaction may also depend on recommendation 
diversity. 

We have already discussed the need to research 
new methods to disentangle signal from noise, 
capture dynamic processes, design experiments 
and integrate heterogeneous data. Computational 
methods that combine 
processing power with clever 
strategies to solve complex 
problems are another central 
issue, as brute-force approaches 
are unlikely to succeed. 
Further challenges include data 
retrieval and summarization. 
Automatic methods to scan and 
format unstructured data (e.g. 
pictures, blogs) may discard 
information or induce biases. 
Also, our current generating of 
more data than we can store (Hilbert, 2012) imposes 
the need to summarize data. Summaries imply a 
potential for loss of information. As an example, 
we recently reported that the current strategy to 
summarize RNA-sequencing data discards so 
much information that one cannot learn certain 
features, even as the amount of data grows to 
infi nity (Rossell et al., 2014). A related issue is that 
of sampling. Storing an adequate sample obtained 
from all data can benefi t speed and cost for a 
negligible loss in precision. See Fan et al. (2014) 
and Jordan (2013) for reviews on statistical and 
computation issues for Big Data.

As a unique combination of scientifi c reasoning, 
probability theory and mathematics, statistics is a 
necessary component for the Big Data revolution to 
reach full potential. However, statistics cannot exist 
in isolation, but rather in collaboration, with subject-
of-matter expertise, computer science and related 
disciplines. As a fi nal thought, the main obstacle 
to overcome may well be the lack of professionals 
with an adequate combination of skills. Recruitment 
and training of young minds willing to engage this 
exciting venture should be a top priority. 
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