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THE LONG AND WINDING ROAD
Accidents and tinkering in software standardization

Sergi Valverde

Software is based on universal principles but not its development. Relating software to hardware 
is never automatic or easy. Attempts to optimize software production and drastically reduce 
their costs (like in hardware) have been very restricted. Instead, highly-skilled and experienced 
individuals are ultimately responsible for project success. The long and convoluted path towards 
useful and reliable software is often plagued by idiosyncratic accidents and emergent complexity. 
It was expected that software standardisation would remove these sources of unwanted 
diversity by aiming at controllable development processes, universal programming languages, 
and toolkits of reusable software components. However, limited adoption of development 
standards suggests that we still do not understand why software is so difficult to produce. 
Software standardisation has been limited by our poor understanding of humans’ role at the 
origin of technological diversity.

Keywords: software standards, software development, programming language, complexity, 
evolution of technology.

Imagine that, when writing a love letter, you were 
forced to write sentences with a fixed number 
of characters. Forget about complex prose 
or mentioning Shakespeare in your masterpiece: 
if you go beyond the limits, you will have to stop 
your sentence whether it is finished or not. This 
happened to every student 
of computer programming in the 
1980s and 1990s, including 
myself. At that time, it was 
necessary to break statements 
longer than 80 characters 
in smaller chunks to fit 
the limitations of text editors. 
This was even more noticeable 
when writing complex 
calculations in the respected 
programming language Fortran. Sometimes 
an equation could not be written in the space of a 
single line, and we had to split the long mathematical 
expression into multiple statements. Insertion 
of annoying line breaks in the middle of your 
thoughts seemed like an unjustified complication 
for a task – computer programming – that was 

(and still is) intrinsically complex. Why 80 and not 
166 or any other number of characters?

The origin of this puzzle is earlier than fixed-
size screens. The root of this accident is the size 
of punched cards used to process the US census 
in 1890s. These stacks of punched cards with 

80 characters per line were 
fed to the first IBM commercial 
computers in the 1950s. 
Our personal computers 
inherited the 80-column 
format, which became the de 
facto standard known by many 
of us. Even today, when 
high-resolution displays 
are commonplace, text editors 
maintain compatibility with 

hardware relics that we will never use again.
As exemplified above, historical accidents 

can leave deep fingerprints in the evolution 
of technology (Arthur, 1994). Some of these 
accidents can be harmless. But others generate 
inefficiencies associated to non-optimal tasks. How to 
guarantee optimality of technological choices? 

«The exponential trend 
of hardware technology 
has not been mirrored 

by parallel improvements 
in software technology»
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One way is to check the collection of good 
practices and recommendations in the 
field. A technological standard removes 
unnecessary elements from engineering 
practices while preserving the «good 
stuff». These standards have saved a lot 
of effort by making sure that «materials, 
products, processes, and services are fit 
for their purpose», as the International 
Organisation for Standardization (known 
as ISO) declares. Many examples 
of useful standards are found in industry 
and engineering, where community 
of experts define and update their corpuses 
of solid recommendations. Crucially, 
the quality of these standards depends 
on experts’ ability to decide when 
the norms and associated inventions 
are still useful or no longer interesting. 
Standardisation increases technological 
efficiency, but it can also prolong existing technologies 
to an excessive degree by inhibiting any investments 
in novel developments (Tassey, 1999). Reaching 
an optimal balance between efficiency and innovation 
is extremely difficult, and our predictions 
of technological innovations have been notoriously 
poor. In particular, complex innovations face higher 
obstacles for market success than simple ones (see 
Figure 1) (Schnaars & Wymbs, 2004).

 ■ SOFTWARE BOTTLENECK

In the last century, we have witnessed a spectacular 
acceleration in computing 
performance, digital storage 
capacity, and world-wide electronic 
communications. The well-known 
Moore’s law is the signature 
of the evolution of information 
technology (IT). This is the 
consequence of solid theoretical 
principles: the conceptual 
foundations of computers remain the same since 
the publication of Alan Turing’s classic works. 
On the other hand, the exponential trend of hardware 
technology has not been mirrored by parallel 
improvements in software technology, which are still 
measured in human timescales. Although both 
hardware and software have grown in complexity, 
there is an important asymmetry in their evolution 
(Valverde, 2016). The current bottleneck in IT 
is not the cost of computer hardware, but obtaining 
the necessary software needed to run them (Ensmenger, 

2010). Software dictates the utility of IT and the 
demand for software has created a huge economic 
problem. Many software projects are plagued by errors, 
accidents and idiosyncratic decisions (Brooks, 1975). 
The recurring project failures urged the community 
to define reliable approaches to high-quality software 

(Charette, 2005).
Ever since the invention 

of computer technology in the 
1950s, standardisation has been 
an aspiring goal for associations 
of computer professionals 
and users. As an emergent 
field, computer professionals 
were eager to demonstrate 

their social utility. In particular, the programmers’ 
initial standardisation efforts focused on software 
interoperability, i.e., the capacity to exchange 
and reuse software between different computers. 
For example, the standard operating system MS-
DOS led to widespread adoption of personal 
computers (PC), which in turn allowed many 
subsequent innovations, like the emergence of the 
Internet and the World-Wide Web. The exponential 
growth of the computer market and the proliferation 
of incompatible computers increased the competition 

Figure 1. Ever since the telephone was invented, its inventors 
predicted long-distance visual interactions. In 1924, 
Alexander Graham Bell said that «the day would come when 
the man at the telephone would be able to see the distant 
person to whom he was speaking». However, the attempted 
commercialization of the Picturephone by AT&T in the 1960s 
(see picture) was a market failure. AT&T invested so much 
in this technology that if commitment alone were the key 
to market success than the videophone should have been 
as commonplace as the telephone many years ago.

«Many software projects 
are plagued by errors, 

accidents and idiosyncratic 
decisions»
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for software. It was expected that standardisation 
would lead not only to compatible but also affordable 
software. To do so, standards focused in two main 
aspects: writing and maintain software code (or 
«software development») and the tools assisting in this 
process (e.g., programming languages and toolkits 
of reusable software components). But while software 
interoperability has been a great success, the limited 
adoption of software development standards suggests 
the presence of poorly understood constraints.

 ■ UNPREDICTABLE SOFTWARE DEVELOPMENT

Initiatives led by the US Department of Defense 
(DoD) are a good example of the obstacles faced 
by software development standards. From the 1970s 
to the 1980s, the DoD attempted to enforce software 
standards to their contractors (McDonald, 2010). 
The goal of the DoD was to reduce the huge costs 
of software development. Underlying this (and other 
parallel initiatives) has been 
the (never-reached) aspiration 
of replacing the human component 
by a fully-automated, error-free, 
process of software development. 
In 1978, the DoD published 
a series of software design 
rules that had to be followed 
by any software contractor: 1) 
software should be developed 
according to a top-down design 
process from the global system 
definition down to its functional parts (see Figure 2), 
2) to improve the readability of software codes (and 
thus reducing the chances of error) there was a 
maximal size of individual software parts and the 
usage of «harmful» machine instructions (like “GO 
TO” instruction, which breaks the logical sequence 
of software operations) were forbidden, and 3) 
all software codes should be written using a listing 
of approved high-level programming languages. 
Surprisingly, the DoD faced much opposition when 
enforcing these rules to contractors. Although 
the standard reflected the conventions about well-
written software, many programmers felt it was 
inadequate and obsolete, and an unnecessary burden 
limiting their freedom. Due to increasing criticisms 
and social pressure, by 1990s, the DoD abandoned 
any attempt of contractually imposing software 
standards.

A fundamental obstacle was the unrealistic 
assumption by the top-down model that the trajectory 
of software projects can be planned. Actual software 

(as well as many other complex engineering projects) 
often involves expensive fixes in latter stages 
of the project, that is, some of the initial design 
choices become historical accidents (McDonald, 
2010). Experience with software projects suggests 
how difficult to meet functional requirements is, 
i.e., determining the set of tasks to be performed 
in software. In particular, any missing specification 
in the initial design translates to expensive 
modifications later in the project lifetime (Boehm, 
1976). For example, users have an intuitive feeling 
about how operating systems (like Microsoft Windows) 
should work, but they have much difficulty describing 
software functions they have never used.

A more pragmatical approach conceptualizes 
software as an incremental and iterative process that 
is not very different from natural evolution. This hopes 
to minimize the amount of redundant design decisions. 
For example, in the prototype-based model, users 
and programmers actively cooperate when building 

a large and stable software 
system. Here, programmers’ 
changes are a source of natural 
variation in the project. Users 
act as the environment for the 
software prototype by selecting 
features according to their needs. 
By repeating this iterative process, 
users and the programmers 
co-evolve a system that fits 
the specifications. Software 
prototyping agrees that, in a 

changing environment, quick and dirty adaptability 
is preferable over inadequate top-down planning.

 ■ AN ELECTRONIC TOWER OF BABEL

The tools used in software development have also 
not reached the uniformity of other technological 
fields, like electrical engineering. Technological 
diversity is found in the public repositories of open-
source software, where there is not a single framework 
for developing software but many. Here, we can 
find many instances of the same problem solved 
in software for different platforms (e.g., Windows, 
Mac OSX or Linux), written in incompatible 
programming languages (e.g., C++, Python, or Java), 
and involving a mix of proprietary software libraries 
(e.g., OpenGL or DirectX). These solutions are based 
on the same ideas and concepts, but their underlying 
technologies are often incompatible, which limits 
their reusability. In this context, successful software 
integration still depends on the goodwill and voluntary 

«A more pragmatical 
approach conceptualizes 

software as an incremental 
and iterative process that 
is not very different from 

natural evolution»
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Figure 2. Standards divide software development work into different phases, such as design, build, test, and maintenance. In the 
1960s, the Department of Defense of the US tried to impose a sequential (or top-down) model of software development to its 
contractors, with little success. Iterative software development is more flexible and can reduce misunderstandings between 
software users and programmers.
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collaboration among programmers. The situation 
of programming languages is particularly telling. 
In 1936, Alan Turing showed there are no theoretical 
barriers to the unification of programming languages, 
i.e., there is a universal computer capable of doing 
any task. However, the reality 
is that we have thousands 
of different programming 
languages at our disposal (see 
Figure 3). Why we cannot just 
create a universal language with 
many functionalities?

Standardisation of programming 
languages has been attempted 
many times, but none of them 
has been universally accepted. 
For example, the aim of the standard language Ada was 
to replace the myriad of programming languages used 
in DoD software projects (more than 450 languages 
were used in these Army projects by the 1970s). Unlike 
many languages designed by private committees (like 
COBOL), the design of Ada was the outcome of an 
international competition subject to external review 
(which included academic experts of programming 
languages). A design goal of Ada was to prevent human 
errors in software development, which features strict 
requirements of safety and concurrency rarely present 
in other languages. In spite of these benefits, Ada never 
gained the popularity of less robust languages like 

C++, which appeared in 1985. Some twenty years later, 
ISO standardised the language C++ for the first time (it 
is a de facto standard). Again, this suggest how success 
is not predictable no matter how much effort we spent 
in the initial design. Many factors influence the success 
of programming languages, including popularity, 
complexity and economics.

From a historical perspective, it seems the path 
from the language C to C++ was easier to follow 
than adopting a high-quality (but relatively unknown) 
standard (see Figure 4). Commitment to the «lesser» 
option did not translate in market lock-in or shortage 
of innovations because programming languages 
are continuously evolving and influencing each 
other. At some point, the large community of C++ 
users benefited from Ada innovations, while keeping 
compatibility with existing technology. It seems 
programmers prefer to live with imperfect software that 
to rebuild everything from scratch.

 ■ EMERGENT COMPLEXITY

In complex engineering processes, e.g., those involving 
software, engineers cannot always decide the best 
course of action. Instead, engineers are “driven” 
by the emergent complexity of their inventions. Both 
the evolution of technology and biology cannot avoid 
tinkering and accidents when complexity is very high.

In the early 1990s, the heterogeneous diversity 
of hardware, operating systems 
and programming languages 
was an obstacle for software 
interoperability. Engineers 
and managers saw component-
based reuse as the natural 
solution to this problem. Instead 
of building software from scratch, 
an existing repository of building 
blocks (or components) 
of common software functions 

could be reused. This approach requires the definition 
of a software interoperability standard, such 
as CORBA (or Common Object Request Broker 
Architecture). In CORBA, software components 
written in different languages, e.g. Java and C, can still 
exchange information by adhering to a common 
software protocol. This standard was defined as the 
«next generation technology for e-commerce» and it 
gained a lot of popularity at the beginning. However, 
technical deficiencies and design flaws difficulted 
its market consolidation, and eventually CORBA 
was displaced by Web-related technologies, like XML 
(Henning, 2008).

Figure 3. This schematic illustrates the branching evolution 
of programming languages. The target of early programming 
languages in the 1960s were mainly industry and businesses. 
Languages of this era, like ALGOL, were designed 
by private committees of experts. However, general adoption 
of information technology accelerated the diversification 
of programming languages. Popular languages like C or Python 
have been developed by distributed communities of software 
practitioners. Different branches influence ongoing evolution 
of programming languages.

«The tools used in software 
development have also 

not reached the uniformity 
of other technological fields, 
like electrical engineering»
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The failure of CORBA 
has been mainly associated 
to quality issues. At a deeper 
lever, it exemplifies the difficult 
task of defining a standard 
interface between software 
components. Component-
based software development 
is very similar to the idea 
of the Lego construction game. 
Lego bricks are interoperable 
thanks to the patented interlocking mechanism 
(see Figure 5). That is, we can connect any pair 
of bricks with independence of their shape, colour 
or function. This is not the case in software. Many 
historical examples teach us painful lessons about 
unwanted interactions between software components. 
To prevent this, we have been forced to test (and 
debug) any interaction, which takes a lot of time 

and effort. This is unavoidable and imposes a hard 
limit on scalable software development.

 ■ EVOLVING THE FUTURE

In a very short amount of time, we have transitioned 
from a science fiction-like view of all-powerful 
computers to a mundane commodity in the 
hands of everybody. This widespread adoption 
of information technology turned software into 
a key component of our society. There is a pressing 
need for more reliable and cheaper ways to develop 
software at faster rates. Software standardisation 
has been proposed as the solution to this problem, 
paralleling the thousands of essential standards 
needed to run our society.

Can we define universal rules to control software 
development? Recent history shows that reliable 
software development remains an elusive goal. 
A main problem is the uncertainty found at each stage 
of the software development process. When designing 
a software system, there are many different options. 
Deciding what is the best option at each stage is far 
from obvious. We cannot be sure about the long-
term uses of technology because their success relies 
on unpredictable environmental changes. Uncertainty 
affects the evolution of many technologies (Petroski, 
1992), but in software this is aggravated due to 
the absence of a physical embedding. Software does 
not decay or break in the same way as technologies 
do. Knowledge of the principles underlying physical 
systems allowed spectacular advances in engineering 
and industry. But the situation is quite different 

in software, where the scientific 
approach to software 
development currently lies 
behind practice. There is a 
need for maturation of software 
development, which depends 
on the availability of scientific 
results (Glass, 2009).

The obstacles to software 
standardisation suggest 
a recurring theme: human 
ingenuity cannot be replaced 

by standard parts. At the moment, brains 
are an essential component of translating human 
requirements to the computer language. We do 
not fully understand how humans program computers. 
Developing useful and reliable software requires 
ingenuity and considerable expertise. Inexpert 
programmers cannot rely on their intuition to assess 
whenever software is large or small, simple 

Figure 4. The path towards the adoption of technologies 
depends on many factors, including their cost. And the fact that 
some programming languages have been carefully designed 
by committees of experts does not automatically imply their 
widespread adoption. The standard language Ada (right path) 
is recognized as a high-quality language (with many unique 
features rarely present in other programming languages). 
However, the popularity of the operating system Unix catalysed 
adoption of its programming language C, and also its object-
oriented successor, C++ (left path). These two programming 
languages –both standardised by ISO– have come to dominate 
the market while Ada has remained a niche solution.

«Uncertainty affects 
the evolution of many 

technologies, but in software 
this is aggravated 

due to the absence of a 
physical embedding»
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or complex, because it is invisible. Only when we spent 
a lot of time programming (and mostly debugging) 
computers, we start to grasp the sheer complexity 
of software. Beyond our intelligence and skills, 
we can only develop complex technology thanks to all 
the knowledge gathered by our society over the years 
(Basalla, 1988; Messoudi, 2011). The evolution 
of complex technologies like the programming 
language C++ has been the outcome of accumulating 
information by many people over many years in open-
source communities. Some defend the idea that 
software development will be soon obsolete, and that 
artificial intelligence will replace entire communities 
of human programmers. This seems very unlikely 
without a full understanding of how humans program 
computers. In either case, one thing seems certain: 
software will not be designed, but evolved. 
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Figure 5. In 1961, US Patent 3005282A proposed a design 
for a «toy building brick», also known as LEGOs. This 
document describes an ingenious interlocking mechanism 
that allows many different toy structures to be assembled. 
A universal interface like this has never been achieved 
in software.

«We do not fully understand how humans 
program computers»
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