DOI: https://doi.org/10.7203/CGUV.107.21240

Seguimiento ambiental en riberas mediante tecnología LiDAR


Resumen


Las metodologías y herramientas que permitan conocer la evolución del corredor ripario tras actuaciones de restauración ecológica, son imprescindibles para monitorizar la eficiencia de las acciones desarrolladas y el cumplimiento de los objetivos del proyecto. El uso de la tecnología LiDAR, la clasificación de imágenes y el uso de herramientas SIG, facilitan el seguimiento de las acciones de restauración. En este artículo se expone una metodología de seguimiento de la evolución del corredor ripario en el marco de un proyecto de restauración para un caso de estudio que consistió en la eliminación de un azud en el río Lozoya. Este seguimiento se ha basado en cuantificar los cambios en variables dendrométricas (altura, diámetro y biomasa) y dasométricas (Fracción de Cabida Cubierta) a partir dos coberturas LiDAR PNOA, realizadas en los años 2010 y 2016, y de la clasificación de imágenes RGB PNOA. Los resultados muestran cambios en el corredor ripario asociados al crecimiento natural, aumentando el número de pies de clases medias de altura y diámetro. Por el contrario, la fracción de cabida cubierta ha disminuido pasando de valores medios en torno al 60-70% a valores entre 40-50%, como resultado de la apertura de espacios abiertos generando un ensanchamiento notable de la zona de cauce activo. Los cambios más relevantes se observaron en un cauce secundario situado en la margen derecha y en las zonas limítrofes con la lámina de agua más próxima a la antigua ubicación del azud. Finalmente, se analizaron las respuestas del corredor a la recuperación de la conectividad, así como las limitaciones y ventajas de emplear esta metodología para analizar la evolución del corredor ripario tras actuaciones de restauración ecológica.


Palabras clave


demolición de azud; LiDAR; restauración; vegetación riparia

Texto completo:

PDF

Referencias


Beucher, S., & Meyer, F. (2018). The morphological approach to segmentation: the watershed transformation. In Mathematical morphology in image processing, 433-481. https://doi.org/10.1201/9781482277234

Boix-Fayos C, de Vente J, Martínez-Mena M, Barberá GG, Castillo V. (2008). The impact of land use change and check-dams on catchment sediment yield. Hydrological Processes, 22, 4922–4935. https://doi.org/10.1002/hyp.7115

Brousse, G., Liébault, F., Arnaud-Fassetta, G., Breilh, B., & Tacon, S. (2021). Gravel replenishment and active-channel widening for braided-river restoration: The case of the Upper Drac River (France). Science of the Total Environment, 766, 142517. https://doi.org/10.1016/j.scitotenv.2020.142517

Cooper D.J., Andersen D.C. (2012). Novel plant communities limit the effects of a managed flood to restore riparian forests along a large regulated river. River Research and Applications, 28, 204-215. https://doi.org/10.1002/rra.1452

Cordes L.D., Hughes F.M.R., Getty M. (1997). Factors affecting the regeneration and distribution of riparian woodlands along a northern prairie river: The Red Deer River, Alberta, Canada. Journal of Biogeography, 24, 675-695.https://doi.org/10.1111/j.1365-2699.1997.tb00077.x

Corenblit D, Steiger J, Gonzalez E, Gurnell AM, Charrier G, Darrozes J, Dousseau J, Julien F, Lambs L, Larrue S, Roussel E, Vautier F, Voldoire O. (2014). The biogeomorphological life cycle of poplars during the fluvial biogeomorphological succession: a special focus on Populus nigra L. Earth Surface Processes and Landforms, 39(4), 546–563. https://doi.org/10.1002/esp.3515

Decamps H., Pinay G., Naiman R.J., Petts G.E., McClain L.E., Hillbricht Ilkowska A., Hanley T.A., Holmes R.M., Quinn J., Gibert J., Planty Tabacchi A.M., Schiemer F., Tabacchi E., Zalewski M. (2004). Riparian zones: where biogeochemistry meets biodiversity in management practice. Polish Journal of Ecology, 52(1), 13–18.

Diallo, A., Agbangba, E.C., Ndiaye, O., Guisse, A. (2013). Ecological structure and prediction equations for estimating tree age, and dendometric parameters of Acacia senegal in the Senegalese semi-arid zone-Ferlo. American Journal of Plant Sciences, 4(5), 1046. https://doi.org/10.4236/ajps.2013.45129

Dilts, T.E., Yang, J., Weisberg, P.J. (2010). Mapping riparian vegetation with LiDAR data: Predicting plant community distribution using height above river and flood height. ArcUser Magazine, 18–21 (Winter 2010 Issue).

Dixon, S.J., Sear, D.A., Odoni, N.A., Sykes, T., Lane, S.N. (2016). The effects of river restoration on catchment scale flood risk and flood hydrology. Earth Surface Processes and Landforms, 41(7), 997–1008. https://doi.org/10.1002/esp.3919

Fassnacht, F.E.; Latifi, H., Sterenczak, K., Modzelewska, A., Lefsky, M., Waser, L.T., Straub, C., Ghosh, A. (2016). Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment, 186, 64–87. https://doi.org/10.1016/j.rse.2016.08.013

Fernandes, M. R., Aguiar, F. C., Ferreira, M. T., & Pereira, J. M. C. (2013). Spectral separability of riparian forests from small and medium-sized rivers across a latitudinal gradient using multispectral imagery. International journal of remote sensing, 34(7), 2375-2401. https://doi.org/10.1080/01431161.2012.744491

García de Jalón, D., Martínez-Fernández, V., Fazelpoor, K., & González del Tánago, M. (2020). Vegetation encroachment ratios in regulated and non-regulated Mediterranean rivers (Spain): An exploratory overview. Journal of Hydro-environment Research, 30, 35-44. https://doi.org/10.1016/j.jher.2019.11.006

Geerling G.W., Kater E., van der Brink C., Baptist M.J., Ragas A.M.J., Smits A.J.M. (2008). Nature rehabilitation by floodplain excavation: The hydraulic effect of 16 years of sedimentation and vegetation succession along the Waal River, NL. Geomorphology, 612(99), 317-328. https://doi.org/10.1016/j.geomorph.2007.11.011

González del Tánago, M., García de Jalón, D., G. Rincón Sanz. (2014). Valoración Ambiental de los ríos de la Comunidad de Madrid. (2014).

González del Tánago, M., Martínez-Fernández, V., & García de Jalón, D. (2016). Diagnosing problems produced by flow regulation and other disturbances in Southern European Rivers: The Porma and Curueño Rivers (Duero Basin, NW Spain). Aquatic sciences, 78(1), 121-133. https://doi.org/10.1007/s00027-015-0428-1

González, E., González-Sanchis, M., Cabezas, A., Comín, F. A., & Muller, E. (2010). Recent changes in the riparian forest of a large regulated Mediterranean river: implications for management. Environmental Management, 45(4), 669-681. http://dx.doi.org/10.1007/s00267-010-9441-2

González E, Sher AA, Tabacchi E, Poulin M, Masip A. (2015). Restoration of riparian vegetation: a review of implementation and evaluation approaches in the international, peer-reviewed literature. Journal of Environmental Management, 158, 85-94. https://doi.org/10.1016/j.jenvman.2015.04.033

Gordon, E., & Meentemeyer, R. K. (2006). Effects of dam operation and land use on stream channel morphology and riparian vegetation. Geomorphology, 82(3-4), 412-429. https://doi.org/10.1016/j.geomorph.2006.06.001

Göthe, E., Timmermann, A., Januschke, K., & Baattrup-Pedersen, A. (2016). Structural and functional responses of floodplain vegetation to stream ecosystem restoration. Hydrobiologia, 769(1), 79-92. https://doi.org/10.1007/s10750-015-2401-3

Gregory, S.V., Swanson, F.J., McKee, W.A., Cummins, K.W. (1991). An ecosystem perspective of riparian zones, focus on links between land and water. Bioscience 41, 540–551. https://doi.org/10.2307/1311607

Guo, X., Coops, N. C., Tompalski, P., Nielsen, S. E., Bater, C. W., & Stadt, J. J. (2017). Regional mapping of vegetation structure for biodiversity monitoring using airborne LiDAR data. Ecological informatics, 38, 50-61. https://doi.org/10.1016/j.ecoinf.2017.01.005

 Huylenbroeck, L., Latte, N., Lejeune, P., Georges, B., Claessens, H., & Michez, A. (2021). What Factors Shape Spatial Distribution of Biomass in Riparian Forests? Insights from a LiDAR Survey over a Large Area. Forests, 12(3), 371. https://doi.org/10.3390/f12030371

Im, D., Kang, H., Kim, K. H., & Choi, S. U. (2011). Changes of river morphology and physical fish habitat following weir removal. Ecological Engineering, 37(6), 883-892. https://doi.org/10.1016/j.ecoleng.2011.01.005

Jochem, A.; Hollaus, M.; Rutzinger, M.; Höfle, B. (2011). Estimation of Aboveground Biomass in Alpine Forests: A Semi-Empirical Approach Considering Canopy Transparency Derived from Airborne LiDAR Data. Sensors 2010, 11(1), 278–295. https://doi.org/10.3390/s110100278

Johansen, K., Coops, N. C., Gergel, S. E., & Stange, Y. (2007). Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification. Remote sensing of Environment, 110(1), 29-44. https://doi.org/10.1016/j.rse.2007.02.014

Johansen, K., Arroyo, L. A., Armston, J., Phinn, S., & Witte, C. (2010). Mapping riparian condition indicators in a sub-tropical savanna environment from discrete return LiDAR data using object-based image analysis. Ecological Indicators, 10(4), 796-807. https://doi.org/10.1016/j.ecolind.2010.01.001

Johnson, LB., Richards, C., Host, GE. and Arthur, JW., (1997). Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology, 37(1), 193-208. https://doi.org/10.1046/j.1365-2427.1997.d01-539.x

Klein, L.R., Hendrix, W.G., Lohr, V.I., Kaytes, J.B., Sayler, R.D., Swanson, M.E., Elliot, W. J., Reganold, J.P., (2015). Linking ecology and aesthetics in sustainable agricultural landscapes: Lessons from the Palouse region of Washington, U.S.A. Landscape and Urban Planning, 134, 195–209. https://doi.org/10.1016/j.landurbplan.2014.10.019

Laslier, M., Hubert-Moy, L., & Dufour, S. (2019). Mapping riparian vegetation functions using 3D bispectral LiDAR data. Water, 11(3), 483. https://doi.org/10.3390/w11030483

Martínez-Fernández, V., González, E., López-Almansa, J. C., González, S. M., & de Jalón, D. G. (2017). Dismantling artificial levees and channel revetments promotes channel widening and regeneration of riparian vegetation over long river segments. Ecological Engineering, 108, 132-142. https://doi.org/10.1016/j.ecoleng.2017.08.005

Michez, A., Piégay, H., Toromanoff, F., Brogna, D., Bonnet, S., Lejeune, P., & Claessens, H. (2013). LiDAR derived ecological integrity indicators for riparian zones: Application to the Houille river in Southern Belgium/Northern France. Ecological indicators, 34, 627-640. https://doi.org/10.1016/j.ecolind.2013.06.024

Michez, A., Piegay, H., Lejeune, P., Claessens, H. (2014). Characterization of riparian zones in wallonia (Belgium) from local to regional scale using aerial LiDAR data and photogrammetric DSM.  EARSeL eProceedings, 13(2). https://doi.org/0.12760/01-2014-2-06

Michez, A.; Piégay, H.; Jonathan, L.; Claessens, H.; Lejeune, P. Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery. (2016). International Journal of Applied Earth Observation and Geoinformation, 44, 88–94.  https://doi.org/10.1016/j.jag.2015.06.014

Michez, A.; Piégay, H.; Lisein, J.; Claessens, H.; Lejeune, P. (2016). Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environmental monitoring and assessment, 188(3), 146. https://doi.org/10.1007/s10661-015-4996-2

Michez, A., Piégay, H., Lejeune, P., & Claessens, H. (2017). Multi-temporal monitoring of a regional riparian buffer network (> 12,000 km) with LiDAR and photogrammetric point clouds. Journal of environmental management, 202, 424-436. https://doi.org/10.1016/j.jenvman.2017.02.034

Mielcarek, M., Stereńczak, K., & Khosravipour, A. (2018). Testing and evaluating different LiDAR-derived canopy height model generation methods for tree height estimation. International journal of applied earth observation and geoinformation, 71, 132-143. https://doi.org/10.1016/j.jag.2018.05.002

Moe, K. T., Owari, T., Furuya, N., & Hiroshima, T. (2020). Comparing individual tree height information derived from field surveys, LiDAR and UAV-DAP for high-value timber species in Northern Japan. Forests, 11(2), 223. https://doi.org/10.3390/f11020223

Naiman, R. J., Decamps, H., & Pollock, M. (1993). The role of riparian corridors in maintaining regional biodiversity. Ecological applications, 3(2), 209-212. https://doi.org/10.2307/1941822

Naiman, R.J., Décamps, H. (1997). The Ecology of Interfaces: Riparian Zones. Annual review of Ecology and Systematics, 28, 621–658. https://doi.org/10.1146/annurev.ecolsys.28.1.621

Naiman, R.J., Decamps, H., McClain, M.E. (2005). Riparia: Ecology, Conservation, and Management of Streamside Communities. Elsevier. https://doi.org/10.1641/0006-3568(2006)56[353:fl]2.0.co;2

Ortiz-Reyes, A.D.; Valdez-Lazalde, J.R.; De-los-Santos-Posadas, H.M.; Ángeles-Pérez, G.; Paz-Pellat, F.; Martínez-Trinidad, T. (2015). Inventario y cartografía de variables del bosque con datos derivados de LiDAR: comparación de métodos. Madera y bosques, 21(3), 111-128. https://doi.org/10.21829/myb.2015.213461

Riedler, B., Pernkopf, L., Strasser, T., Lang, S., Smith, G. (2015). A composite indicator for assessing habitat quality of riparian forests derived from Earth observation data. International Journal of Applied Earth Observation and Geoinformation, 37, 114–123. https://doi.org/10.1016/j.jag.2014.09.006

Rivaes, R. P., Rodríguez-González, P. M., Ferreira, M. T., Pinheiro, A. N., Politti, E., Egger, G., García-Arias, A., & Francés, F. (2014). Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes. PLoS One, 9(10), e110200. https://doi.org/10.1371/journal.pone.0110200

Rodríguez-González, P. M., Stella, J. C., Campelo, F., Ferreira, M. T., & Albuquerque, A. (2010). Subsidy or stress? Tree structure and growth in wetland forests along a hydrological gradient in Southern Europe. Forest Ecology and Management, 259(10), 2015-2025. https://doi.org/10.1016/j.foreco.2010.02.012

Rohde S., Schütz M., Kienast F., Englmaier P. (2005). River widening: an approach to restoring riparian habitats and plant species. River Research and Applications 21(10), 1075-1094. https://doi.org/10.1002/rra.870

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA special publication, 351, 309.

Shafroth, P. B., Friedman, J. M., Auble, G. T., Scott, M. L., & Braatne, J. H. (2002). Potential responses of riparian vegetation to dam removal: dam removal generally causes changes to aspects of the physical environment that influence the establishment and growth of riparian vegetation. BioScience, 52(8), 703-712. https://doi.org/10.1641/0006-3568(2002)052[0703:PRORVT]2.0.CO;2

Stromberg, J. C., Lite, S. J., Marler, R., Paradzick, C., Shafroth, P. B., Shorrock, D., Jacqueline M.W., Margaret S.W. (2007). Altered stream‐flow regimes and invasive plant species: The Tamarix case. Global Ecology and Biogeography, 16(3), 381-393. https://doi.org/10.1111/j.1466-8238.2007.00297.x

Sullivan, F. B., Ducey, M. J., Orwig, D. A., Cook, B., Palace, M.W. (2017). Comparison of lidar- and allometry-derived canopy height models in an eastern deciduous forest. Forest Ecology and Management, 406, 83- 94. https://doi.org/10.1016/j.foreco.2017.10.005

Tealdi, S., Camporeale, C., Perucca, E., & Ridolfi, L. (2010). Longitudinal dispersion in vegetated rivers with stochastic flows. Advances in Water Resources, 33, 526–571. https://doi.org/10.1016/j.advwatres.2010.03.003

Tormos, T., Kosuth, P., Durrieu, S., Villeneuve, B., & Wasson, J. G. (2011). Improving the quantification of land cover pressure on stream ecological status at the riparian scale using High Spatial Resolution Imagery. Physics and Chemistry of the Earth, 36(12), 549-559. https://doi.org/10.1016/j.pce.2010.07.012

Wangaard, F. F. (1979). Wood: its structure and properties. Journal of Educational Modules for Materials Science and Engineerin, 1(3), 437-534.

Ward, J. V., Robinson, C. T., & Tockner, K. (2002). Applicability of ecological theory to riverine ecosystems. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 28(1), 443-450. https://doi.org/10.1080/03680770.2001.11902621

Webb, R. H., & Leake, S. A. (2006). Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States. Journal of Hydrology, 320(3-4), 302-323. https://doi.org/10.1016/j.jhydrol.2005.07.022


Enlaces refback

  • No hay ningún enlace refback.


Cuadernos de Geografía de la Universitat de València
Revista editada por el Departament de Geografia de la UV
Equipo Editorial, Consejo de Redacción y Asesor

ISSN: 0210-086X | ISSN Digital: 2695-7965
Contacto | Políticas | Envíos | Indexación