DOI: https://doi.org/10.7203/CGUV.107.21119

Potencial de las imágenes aéreas históricas y la fotogrametría automatizada para elaborar modelos 3D de cauces efímeros mediterráneos y cuantificar cambios morfológicos


Resumen


El estudio de la dinámica de los cauces efímeros mediterráneos (CEM) resulta de gran interés, al tratarse de sistemas geomorfológicos expuestos a importantes fluctuaciones recientes en los factores extrínsecos e intrínsecos que los gobiernan. Para obtener una aproximación a su modelo dinámico y comprender su adaptación a diferentes perturbaciones resulta vital el desarrollo de estudios a una escala temporal adecuada (décadas). En este trabajo, se analiza el potencial de los fotogramas aéreos históricos y la fotogrametría automatizada para generar modelos 3D y ortofotografías de CEM en diferentes fechas y tratar de analizar cambios morfológicos a partir de ellos. Se seleccionaron, a modo de ejemplo, varios tramos de dos ramblas en la cuenca del Segura (Rambla de Algeciras y Rambla de Valdelentisco) y otros tres en un curso efímero de la Cuenca del Ebro (Barranco de Tudela). Se emplearon fotogramas de los denominados vuelo americano B (1956) y vuelo interministerial (1973-1986), junto con puntos de apoyo naturales registrados con un sistema de posicionamiento global (GNSS) para alimentar técnicas de fotogrametría automatizada (Structure-from-Motion & Multi-View Stereo) y producir nubes de puntos, modelos digitales de superficie y ortofotografías. Fue necesario llevar a cabo algunas adaptaciones del flujo de trabajo fotogramétrico convencional a las características de los fotogramas (inclusión de marcas fiduciales, utilización de máscaras, uso de puntos naturales, etc.). Los resultados arrojaron un error cuadrático medio de los productos cartográficos que osciló entre 0,62 y 0,85 m con densidades volumétricas de las nubes de puntos resultantes de 1,03 a 4,47 pts·m-3. Por lo tanto, este enfoque metodológico podría emplearse en el análisis de cambios relevantes (>1 m) y para la descripción morfológica de los cauces e integrarse con cartografía reciente para una mejor compresión de su dinámica.


Palabras clave


Cauces efímeros mediterráneos; fotogramas aéreos históricos; nubes de puntos; modelo digital de elevaciones; ortofotografía

Texto completo:

PDF

Referencias


Alfonso-Torreno, A., Gomez-Gutierrez, A., Schnabel, S., Lavado Contador, J. F., de Sanjose Blasco, J. J., & Sanchez Fernandez, M. (2019). sUAS, SfM-MVS photogrammetry and a topographic algorithm method to quantify the volume of sediments retained in check-dams. Sci Total Environ, 678, 369-382. https://doi.org/10.1016/j.scitotenv.2019.04.332

Alfonso-Torreño, A., Gómez-Gutiérrez, Á., & Schnabel, S. (2021). Dynamics of Erosion and Deposition in a Partially Restored Valley-Bottom Gully. Land, 10(1), 62. https://www.mdpi.com/2073-445X/10/1/62

Bakker, M., & Lane, S. N. (2017). Archival photogrammetric analysis of river–floodplain systems using Structure from Motion (SfM) methods. Earth Surface Processes and Landforms, 42(8), 1274-1286. https://doi.org/https://doi.org/10.1002/esp.4085

Besl, P. J., & McKay, N. D. (1992). A Method for Registration of 3-D Shapes [Article]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239-256. https://doi.org/10.1109/34.121791

Brutto, M. L., & Meli, P. (2012). Computer Vision Tools for 3D Modelling in Archaeology. International Journal of Heritage in the Digital Era, 1(1_suppl), 1-6. https://doi.org/10.1260/2047-4970.1.0.1

Conesa-Garcia, C. (1995). Torrential flow frequency and morphological adjustments of ephemeral channels in south-east Spain. In E. J. Hickin (Ed.), River Geomorphology (pp. 169-192). John Wiley & Sons.

Cowley, D. C., & Stichelbaut, B. B. (2012). Historic Aerial Photographic Archives for European Archaeology. European Journal of Archaeology, 15(2), 217-236. https://doi.org/10.1179/1461957112Y.0000000010

Cucchiaro, S., Maset, E., Fusiello, A., & Cazorzi, F. (2018). 4D-SfM photogrammetry for monitoring sediment dynamics in a debris-flow catchment: software testing and results comparison. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 281-288. https://doi.org/10.5194/isprs-archives-XLII-2-281-2018

Eltner, A., & Sofia, G. (2020). Structure from motion photogrammetric technique. In Remote Sensing of Geomorphology (pp. 1-24). https://doi.org/10.1016/b978-0-444-64177-9.00001-1

Feurer, D., & Vinatier, F. (2018). Joining multi-epoch archival aerial images in a single SfM block allows 3-D change detection with almost exclusively image information. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 495-506. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2018.10.016

García, C. (2005). Les ‘ramblas’ du Sud-est Espagnol: Systèmes hydromorphologiques en milieu méditerranéen sec. Zeitschrift fur Geomorphologie, 49, 205-224.

Gómez-Gutiérrez, A., & Goncalves, G. R. (2020). Surveying coastal cliffs using two UAV platforms (multirotor and fixed-wing) and three different approaches for the estimation of volumetric changes [Article]. International Journal of Remote Sensing, 41(21), 8143-8175. https://doi.org/10.1080/01431161.2020.1752950

Gomez-Gutierrez, A., Schnabel, S., Berenguer-Sempere, F., Lavado-Contador, F., & Rubio-Delgado, J. (2014). Using 3D photo-reconstruction methods to estimate gully headcut erosion. Catena, 120, 91-101. https://doi.org/10.1016/j.catena.2014.04.004

Gomez, C. (2014). Digital photogrammetry and GIS-based analysis of the bio-geomorphological evolution of Sakurajima Volcano, diachronic analysis from 1947 to 2006. Journal of Volcanology and Geothermal Research, 280, 1-13. https://doi.org/https://doi.org/10.1016/j.jvolgeores.2014.04.015

Guerin, A., Stock, G. M., Radue, M. J., Jaboyedoff, M., Collins, B. D., Matasci, B., Avdievitch, N., & Derron, M.-H. (2020). Quantifying 40 years of rockfall activity in Yosemite Valley with historical Structure-from-Motion photogrammetry and terrestrial laser scanning. Geomorphology, 356, 107069. https://doi.org/https://doi.org/10.1016/j.geomorph.2020.107069

James, M. R., & Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research: Earth Surface, 117(F3). https://doi.org/https://doi.org/10.1029/2011JF002289

James, M. R., & Robson, S. (2014). Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surface Processes and Landforms, 39(10), 1413-1420. https://doi.org/10.1002/esp.3609

Lague, D., Brodu, N., & Leroux, J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetry and Remote Sensing, 82, 10-26. https://doi.org/10.1016/j.isprsjprs.2013.04.009

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision, 60(2), 91-110. https://doi.org/10.1023/b:visi.0000029664.99615.94

Mertes, J. R., Gulley, J. D., Benn, D. I., Thompson, S. S., & Nicholson, L. I. (2017). Using structure-from-motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery. Earth Surface Processes and Landforms, 42(14), 2350-2364. https://doi.org/https://doi.org/10.1002/esp.4188

Mölg, N., & Bolch, T. (2017). Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation. Remote Sensing, 9(10), 1021. https://www.mdpi.com/2072-4292/9/10/1021

Nouwakpo, S. K., Weltz, M. A., & McGwire, K. (2016). Assessing the performance of structure-from-motion photogrammetry and terrestrial LiDAR for reconstructing soil surface microtopography of naturally vegetated plots. Earth Surface Processes and Landforms, 41(3), 308-322. https://doi.org/10.1002/esp.3787

Qin, R., Tian, J., & Reinartz, P. (2016). 3D change detection – Approaches and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 122(Supplement C), 41-56. https://doi.org/10.1016/j.isprsjprs.2016.09.013

Remondino, F., Spera, M. G., Nocerino, E., Menna, F., & Nex, F. (2014). State of the art in high density image matching. The Photogrammetric Record, 29(146), 144-166. https://doi.org/https://doi.org/10.1111/phor.12063

Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. IEEE Conference on Computer Vision and Pattern Recognition, New York.

Tonkin, T. N., Midgley, N. G., Cook, S. J., & Graham, D. J. (2016). Ice-cored moraine degradation mapped and quantified using an unmanned aerial vehicle: A case study from a polythermal glacier in Svalbard. Geomorphology, 258, 1-10. https://doi.org/https://doi.org/10.1016/j.geomorph.2015.12.019

Ullman, S. (1979). The interpretation of structure from motion. Proceedings of the Royal Society B, 203, 405-426. https://doi.org/10.1098/rspb.1979.0006

Warrick, J. A., Ritchie, A. C., Adelman, G., Adelman, K., & Limber, P. W. (2016). New Techniques to Measure Cliff Change from Historical Oblique Aerial Photographs and Structure-from-Motion Photogrammetry. Journal of Coastal Research, 33(1), 39-55. https://doi.org/10.2112/jcoastres-d-16-00095.1

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/https://doi.org/10.1016/j.geomorph.2012.08.021

Wheaton, J. M., Brasington, J., Darby, S. E., & Sear, D. A. (2010). Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surface Processes and Landforms, 35(2), 136-156. http://www.scopus.com/inward/record.url?eid=2-s2.0-77649140888&partnerID=40&md5=2ef93cc53edbd60a7e9a8e2fc3621789


Enlaces refback

  • No hay ningún enlace refback.


Cuadernos de Geografía de la Universitat de València
Revista editada por el Departament de Geografia de la UV
Equipo Editorial, Consejo de Redacción y Asesor

ISSN: 0210-086X | ISSN Digital: 2695-7965
Contacto | Políticas | Envíos | Indexación